Class SequenceEnqueuer
Defined in tensorflow/python/keras/utils/data_utils.py.
Base class to enqueue inputs.
The task of an Enqueuer is to use parallelism to speed up preprocessing. This is done with processes or threads.
Example:
enqueuer = SequenceEnqueuer(...)
enqueuer.start()
datas = enqueuer.get()
for data in datas:
# Use the inputs; training, evaluating, predicting.
# ... stop sometime.
enqueuer.close()
The enqueuer.get() should be an infinite stream of datas.
__init__
__init__(
sequence,
use_multiprocessing=False
)
Initialize self. See help(type(self)) for accurate signature.
Methods
tf.keras.utils.SequenceEnqueuer.get
get()
Creates a generator to extract data from the queue.
Skip the data if it is None.
Returns
Generator yielding tuples `(inputs, targets)`
or `(inputs, targets, sample_weights)`.
tf.keras.utils.SequenceEnqueuer.is_running
is_running()
tf.keras.utils.SequenceEnqueuer.start
start(
workers=1,
max_queue_size=10
)
Starts the handler's workers.
Arguments:
workers: Number of workers.max_queue_size: queue size (when full, workers could block onput())
tf.keras.utils.SequenceEnqueuer.stop
stop(timeout=None)
Stops running threads and wait for them to exit, if necessary.
Should be called by the same thread which called start().
Arguments:
timeout: maximum time to wait onthread.join()