tf.metrics.precision_at_thresholds(
labels,
predictions,
thresholds,
weights=None,
metrics_collections=None,
updates_collections=None,
name=None
)
Defined in tensorflow/python/ops/metrics_impl.py
.
Computes precision values for different thresholds
on predictions
.
The precision_at_thresholds
function creates four local variables,
true_positives
, true_negatives
, false_positives
and false_negatives
for various values of thresholds. precision[i]
is defined as the total
weight of values in predictions
above thresholds[i]
whose corresponding
entry in labels
is True
, divided by the total weight of values in
predictions
above thresholds[i]
(true_positives[i] / (true_positives[i] +
false_positives[i])
).
For estimation of the metric over a stream of data, the function creates an
update_op
operation that updates these variables and returns the
precision
.
If weights
is None
, weights default to 1. Use weights of 0 to mask values.
Args:
labels
: The ground truth values, aTensor
whose dimensions must matchpredictions
. Will be cast tobool
.predictions
: A floating pointTensor
of arbitrary shape and whose values are in the range[0, 1]
.thresholds
: A python list or tuple of float thresholds in[0, 1]
.weights
: OptionalTensor
whose rank is either 0, or the same rank aslabels
, and must be broadcastable tolabels
(i.e., all dimensions must be either1
, or the same as the correspondinglabels
dimension).metrics_collections
: An optional list of collections thatauc
should be added to.updates_collections
: An optional list of collections thatupdate_op
should be added to.name
: An optional variable_scope name.
Returns:
precision
: A floatTensor
of shape[len(thresholds)]
.update_op
: An operation that increments thetrue_positives
,true_negatives
,false_positives
andfalse_negatives
variables that are used in the computation ofprecision
.
Raises:
ValueError
: Ifpredictions
andlabels
have mismatched shapes, or ifweights
is notNone
and its shape doesn't matchpredictions
, or if eithermetrics_collections
orupdates_collections
are not a list or tuple.RuntimeError
: If eager execution is enabled.