tf.metrics.true_negatives(
labels,
predictions,
weights=None,
metrics_collections=None,
updates_collections=None,
name=None
)
Defined in tensorflow/python/ops/metrics_impl.py.
Sum the weights of true_negatives.
If weights is None, weights default to 1. Use weights of 0 to mask values.
Args:
labels: The ground truth values, aTensorwhose dimensions must matchpredictions. Will be cast tobool.predictions: The predicted values, aTensorof arbitrary dimensions. Will be cast tobool.weights: OptionalTensorwhose rank is either 0, or the same rank aslabels, and must be broadcastable tolabels(i.e., all dimensions must be either1, or the same as the correspondinglabelsdimension).metrics_collections: An optional list of collections that the metric value variable should be added to.updates_collections: An optional list of collections that the metric update ops should be added to.name: An optional variable_scope name.
Returns:
value_tensor: ATensorrepresenting the current value of the metric.update_op: An operation that accumulates the error from a batch of data.
Raises:
ValueError: Ifpredictionsandlabelshave mismatched shapes, or ifweightsis notNoneand its shape doesn't matchpredictions, or if eithermetrics_collectionsorupdates_collectionsare not a list or tuple.RuntimeError: If eager execution is enabled.