tf.nn.conv2d_backprop_input(
input_sizes,
filter,
out_backprop,
strides,
padding,
use_cudnn_on_gpu=True,
data_format='NHWC',
dilations=[1, 1, 1, 1],
name=None
)
Defined in generated file: tensorflow/python/ops/gen_nn_ops.py.
Computes the gradients of convolution with respect to the input.
Args:
input_sizes: ATensorof typeint32. An integer vector representing the shape ofinput, whereinputis a 4-D[batch, height, width, channels]tensor.filter: ATensor. Must be one of the following types:half,bfloat16,float32,float64. 4-D with shape[filter_height, filter_width, in_channels, out_channels].out_backprop: ATensor. Must have the same type asfilter. 4-D with shape[batch, out_height, out_width, out_channels]. Gradients w.r.t. the output of the convolution.strides: A list ofints. The stride of the sliding window for each dimension of the input of the convolution. Must be in the same order as the dimension specified with format.padding: Astringfrom:"SAME", "VALID". The type of padding algorithm to use.use_cudnn_on_gpu: An optionalbool. Defaults toTrue.data_format: An optionalstringfrom:"NHWC", "NCHW". Defaults to"NHWC". Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, in_height, in_width, in_channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, in_channels, in_height, in_width].dilations: An optional list ofints. Defaults to[1, 1, 1, 1]. 1-D tensor of length 4. The dilation factor for each dimension ofinput. If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value ofdata_format, see above for details. Dilations in the batch and depth dimensions must be 1.name: A name for the operation (optional).
Returns:
A Tensor. Has the same type as filter.