tf.nn.ctc_greedy_decoder(
inputs,
sequence_length,
merge_repeated=True
)
Defined in tensorflow/python/ops/ctc_ops.py
.
Performs greedy decoding on the logits given in input (best path).
If merge_repeated
is True
, merge repeated classes in output.
This means that if consecutive logits' maximum indices are the same,
only the first of these is emitted. The sequence A B B * B * B
(where '*'
is the blank label) becomes
A B B B
ifmerge_repeated=True
.A B B B B
ifmerge_repeated=False
.
Args:
inputs
: 3-Dfloat
Tensor
sized[max_time, batch_size, num_classes]
. The logits.sequence_length
: 1-Dint32
vector containing sequence lengths, having size[batch_size]
.merge_repeated
: Boolean. Default: True.
Returns:
A tuple (decoded, neg_sum_logits)
where
decoded
: A single-element list.decoded[0]
is anSparseTensor
containing the decoded outputs s.t.:decoded.indices
: Indices matrix(total_decoded_outputs, 2)
. The rows store:[batch, time]
.decoded.values
: Values vector, size(total_decoded_outputs)
. The vector stores the decoded classes.decoded.dense_shape
: Shape vector, size(2)
. The shape values are:[batch_size, max_decoded_length]
neg_sum_logits
: Afloat
matrix(batch_size x 1)
containing, for the sequence found, the negative of the sum of the greatest logit at each timeframe.