tf.ragged.map_flat_values(
op,
*args,
**kwargs
)
Defined in tensorflow/python/ops/ragged/ragged_functional_ops.py
.
Applies op
to the values of one or more RaggedTensors.
Replaces any RaggedTensor
in args
or kwargs
with its flat_values
tensor, and then calls op
. Returns a RaggedTensor
that is constructed
from the input RaggedTensor
s' nested_row_splits
and the value returned by
the op
.
If the input arguments contain multiple RaggedTensor
s, then they must have
identical nested_row_splits
.
Examples:
>>> rt = ragged.constant([[1, 2, 3], [], [4, 5], [6]])
>>> ragged.map_flat_values(tf.ones_like, rt).eval().tolist()
[[1, 1, 1], [], [1, 1], [1]]
>>> ragged.map_flat_values(tf.multiply, rt, rt).eval().tolist()
[[1, 4, 9], [], [16, 25], [36]]
>>> ragged.map_flat_values(tf.add, rt, 5).eval().tolist()
[[6, 7, 8], [], [9, 10], [11]]
Args:
op
: The operation that should be applied to the RaggedTensorflat_values
.op
is typically an element-wise operation (such as math_ops.add), but any operation that preserves the size of the outermost dimension can be used. I.e.,shape[0]
of the value returned byop
must matchshape[0]
of theRaggedTensor
s'flat_values
tensors.*args
: Arguments forop
.**kwargs
: Keyword arguments forop
.
Returns:
A RaggedTensor
whose ragged_rank
matches the ragged_rank
of all
input RaggedTensor
s.
Raises:
ValueError
: If args contains noRaggedTensors
, or if thenested_splits
of the inputRaggedTensor
s are not identical.