Aliases:
tf.random.poisson
tf.random_poisson
tf.random.poisson(
lam,
shape,
dtype=tf.dtypes.float32,
seed=None,
name=None
)
Defined in tensorflow/python/ops/random_ops.py
.
Draws shape
samples from each of the given Poisson distribution(s).
lam
is the rate parameter describing the distribution(s).
Example:
samples = tf.random_poisson([0.5, 1.5], [10])
# samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents
# the samples drawn from each distribution
samples = tf.random_poisson([12.2, 3.3], [7, 5])
# samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1]
# represents the 7x5 samples drawn from each of the two distributions
Args:
lam
: A Tensor or Python value or N-D array of typedtype
.lam
provides the rate parameter(s) describing the poisson distribution(s) to sample.shape
: A 1-D integer Tensor or Python array. The shape of the output samples to be drawn per "rate"-parameterized distribution.dtype
: The type of the output:float16
,float32
,float64
,int32
orint64
.seed
: A Python integer. Used to create a random seed for the distributions. Seetf.set_random_seed
for behavior.name
: Optional name for the operation.
Returns:
samples
: aTensor
of shapetf.concat([shape, tf.shape(lam)], axis=0)
with values of typedtype
.