Aliases:
tf.random.uniform
tf.random_uniform
tf.random.uniform(
shape,
minval=0,
maxval=None,
dtype=tf.dtypes.float32,
seed=None,
name=None
)
Defined in tensorflow/python/ops/random_ops.py
.
Outputs random values from a uniform distribution.
The generated values follow a uniform distribution in the range
[minval, maxval)
. The lower bound minval
is included in the range, while
the upper bound maxval
is excluded.
For floats, the default range is [0, 1)
. For ints, at least maxval
must
be specified explicitly.
In the integer case, the random integers are slightly biased unless
maxval - minval
is an exact power of two. The bias is small for values of
maxval - minval
significantly smaller than the range of the output (either
2**32
or 2**64
).
Args:
shape
: A 1-D integer Tensor or Python array. The shape of the output tensor.minval
: A 0-D Tensor or Python value of typedtype
. The lower bound on the range of random values to generate. Defaults to 0.maxval
: A 0-D Tensor or Python value of typedtype
. The upper bound on the range of random values to generate. Defaults to 1 ifdtype
is floating point.dtype
: The type of the output:float16
,float32
,float64
,int32
, orint64
.seed
: A Python integer. Used to create a random seed for the distribution. Seetf.set_random_seed
for behavior.name
: A name for the operation (optional).
Returns:
A tensor of the specified shape filled with random uniform values.
Raises:
ValueError
: Ifdtype
is integral andmaxval
is not specified.