Aliases:
tf.random.uniformtf.random_uniform
tf.random.uniform(
shape,
minval=0,
maxval=None,
dtype=tf.dtypes.float32,
seed=None,
name=None
)
Defined in tensorflow/python/ops/random_ops.py.
Outputs random values from a uniform distribution.
The generated values follow a uniform distribution in the range
[minval, maxval). The lower bound minval is included in the range, while
the upper bound maxval is excluded.
For floats, the default range is [0, 1). For ints, at least maxval must
be specified explicitly.
In the integer case, the random integers are slightly biased unless
maxval - minval is an exact power of two. The bias is small for values of
maxval - minval significantly smaller than the range of the output (either
2**32 or 2**64).
Args:
shape: A 1-D integer Tensor or Python array. The shape of the output tensor.minval: A 0-D Tensor or Python value of typedtype. The lower bound on the range of random values to generate. Defaults to 0.maxval: A 0-D Tensor or Python value of typedtype. The upper bound on the range of random values to generate. Defaults to 1 ifdtypeis floating point.dtype: The type of the output:float16,float32,float64,int32, orint64.seed: A Python integer. Used to create a random seed for the distribution. Seetf.set_random_seedfor behavior.name: A name for the operation (optional).
Returns:
A tensor of the specified shape filled with random uniform values.
Raises:
ValueError: Ifdtypeis integral andmaxvalis not specified.