tf.sequence_mask(
lengths,
maxlen=None,
dtype=tf.dtypes.bool,
name=None
)
Defined in tensorflow/python/ops/array_ops.py
.
Returns a mask tensor representing the first N positions of each cell.
If lengths
has shape [d_1, d_2, ..., d_n]
the resulting tensor mask
has
dtype dtype
and shape [d_1, d_2, ..., d_n, maxlen]
, with
mask[i_1, i_2, ..., i_n, j] = (j < lengths[i_1, i_2, ..., i_n])
Examples:
tf.sequence_mask([1, 3, 2], 5) # [[True, False, False, False, False],
# [True, True, True, False, False],
# [True, True, False, False, False]]
tf.sequence_mask([[1, 3],[2,0]]) # [[[True, False, False],
# [True, True, True]],
# [[True, True, False],
# [False, False, False]]]
Args:
lengths
: integer tensor, all its values <= maxlen.maxlen
: scalar integer tensor, size of last dimension of returned tensor. Default is the maximum value inlengths
.dtype
: output type of the resulting tensor.name
: name of the op.
Returns:
A mask tensor of shape lengths.shape + (maxlen,)
, cast to specified dtype.
Raises:
ValueError
: ifmaxlen
is not a scalar.