Aliases:
tf.signal.idct
tf.spectral.idct
tf.signal.idct(
input,
type=2,
n=None,
axis=-1,
norm=None,
name=None
)
Defined in tensorflow/python/ops/signal/dct_ops.py
.
Computes the 1D Inverse Discrete Cosine Transform (DCT) of input
.
Currently only Types I, II and III are supported. Type III is the inverse of Type II, and vice versa.
Note that you must re-normalize by 1/(2n) to obtain an inverse if norm
is
not 'ortho'
. That is:
signal == idct(dct(signal)) * 0.5 / signal.shape[-1]
.
When norm='ortho'
, we have:
signal == idct(dct(signal, norm='ortho'), norm='ortho')
.
Args:
input
: A[..., samples]
float32
Tensor
containing the signals to take the DCT of.type
: The IDCT type to perform. Must be 1, 2 or 3.n
: For future expansion. The length of the transform. Must beNone
.axis
: For future expansion. The axis to compute the DCT along. Must be-1
.norm
: The normalization to apply.None
for no normalization or'ortho'
for orthonormal normalization.name
: An optional name for the operation.
Returns:
A [..., samples]
float32
Tensor
containing the IDCT of input
.
Raises:
ValueError
: Iftype
is not1
,2
or3
,n
is notNone,
axisis not
-1, or
normis not
Noneor
'ortho'`.
Scipy Compatibility
Equivalent to scipy.fftpack.idct for Type-I, Type-II and Type-III DCT. https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.idct.html