Aliases:
tf.sparse.concat
tf.sparse_concat
tf.sparse.concat(
axis,
sp_inputs,
name=None,
expand_nonconcat_dim=False,
concat_dim=None
)
Defined in tensorflow/python/ops/sparse_ops.py
.
Concatenates a list of SparseTensor
along the specified dimension. (deprecated arguments)
Concatenation is with respect to the dense versions of each sparse input.
It is assumed that each inputs is a SparseTensor
whose elements are ordered
along increasing dimension number.
If expand_nonconcat_dim is False, all inputs' shapes must match, except for the concat dimension. If expand_nonconcat_dim is True, then inputs' shapes are allowed to vary among all inputs.
The indices
, values
, and shapes
lists must have the same length.
If expand_nonconcat_dim is False, then the output shape is identical to the inputs', except along the concat dimension, where it is the sum of the inputs' sizes along that dimension.
If expand_nonconcat_dim is True, then the output shape along the non-concat dimensions will be expand to be the largest among all inputs, and it is the sum of the inputs sizes along the concat dimension.
The output elements will be resorted to preserve the sort order along increasing dimension number.
This op runs in O(M log M)
time, where M
is the total number of non-empty
values across all inputs. This is due to the need for an internal sort in
order to concatenate efficiently across an arbitrary dimension.
For example, if axis = 1
and the inputs are
sp_inputs[0]: shape = [2, 3]
[0, 2]: "a"
[1, 0]: "b"
[1, 1]: "c"
sp_inputs[1]: shape = [2, 4]
[0, 1]: "d"
[0, 2]: "e"
then the output will be
shape = [2, 7]
[0, 2]: "a"
[0, 4]: "d"
[0, 5]: "e"
[1, 0]: "b"
[1, 1]: "c"
Graphically this is equivalent to doing
[ a] concat [ d e ] = [ a d e ]
[b c ] [ ] [b c ]
Another example, if 'axis = 1' and the inputs are
sp_inputs[0]: shape = [3, 3]
[0, 2]: "a"
[1, 0]: "b"
[2, 1]: "c"
sp_inputs[1]: shape = [2, 4]
[0, 1]: "d"
[0, 2]: "e"
if expand_nonconcat_dim = False, this will result in an error. But if expand_nonconcat_dim = True, this will result in:
shape = [3, 7]
[0, 2]: "a"
[0, 4]: "d"
[0, 5]: "e"
[1, 0]: "b"
[2, 1]: "c"
Graphically this is equivalent to doing
[ a] concat [ d e ] = [ a d e ]
[b ] [ ] [b ]
[ c ] [ c ]
Args:
axis
: Dimension to concatenate along. Must be in range [-rank, rank), where rank is the number of dimensions in each inputSparseTensor
.sp_inputs
: List ofSparseTensor
to concatenate.name
: A name prefix for the returned tensors (optional).expand_nonconcat_dim
: Whether to allow the expansion in the non-concat dimensions. Defaulted to False.concat_dim
: The old (deprecated) name for axis.
Returns:
A SparseTensor
with the concatenated output.
Raises:
TypeError
: Ifsp_inputs
is not a list ofSparseTensor
.