Aliases:
tf.sparse.fill_empty_rows
tf.sparse_fill_empty_rows
tf.sparse.fill_empty_rows(
sp_input,
default_value,
name=None
)
Defined in tensorflow/python/ops/sparse_ops.py
.
Fills empty rows in the input 2-D SparseTensor
with a default value.
This op adds entries with the specified default_value
at index
[row, 0]
for any row in the input that does not already have a value.
For example, suppose sp_input
has shape [5, 6]
and non-empty values:
[0, 1]: a
[0, 3]: b
[2, 0]: c
[3, 1]: d
Rows 1 and 4 are empty, so the output will be of shape [5, 6]
with values:
[0, 1]: a
[0, 3]: b
[1, 0]: default_value
[2, 0]: c
[3, 1]: d
[4, 0]: default_value
Note that the input may have empty columns at the end, with no effect on this op.
The output SparseTensor
will be in row-major order and will have the
same shape as the input.
This op also returns an indicator vector such that
empty_row_indicator[i] = True iff row i was an empty row.
Args:
sp_input
: ASparseTensor
with shape[N, M]
.default_value
: The value to fill for empty rows, with the same type assp_input.
name
: A name prefix for the returned tensors (optional)
Returns:
sp_ordered_output
: ASparseTensor
with shape[N, M]
, and with all empty rows filled in withdefault_value
.empty_row_indicator
: A bool vector of lengthN
indicating whether each input row was empty.
Raises:
TypeError
: Ifsp_input
is not aSparseTensor
.