tf.sparse_matmul(
a,
b,
transpose_a=False,
transpose_b=False,
a_is_sparse=False,
b_is_sparse=False,
name=None
)
Defined in generated file: tensorflow/python/ops/gen_math_ops.py
.
Multiply matrix "a" by matrix "b".
The inputs must be two-dimensional matrices and the inner dimension of "a" must
match the outer dimension of "b". Both "a" and "b" must be Tensor
s not
SparseTensor
s. This op is optimized for the case where at least one of "a" or
"b" is sparse, in the sense that they have a large proportion of zero values.
The breakeven for using this versus a dense matrix multiply on one platform was
30% zero values in the sparse matrix.
The gradient computation of this operation will only take advantage of sparsity in the input gradient when that gradient comes from a Relu.
Args:
a
: ATensor
. Must be one of the following types:float32
,bfloat16
.b
: ATensor
. Must be one of the following types:float32
,bfloat16
.transpose_a
: An optionalbool
. Defaults toFalse
.transpose_b
: An optionalbool
. Defaults toFalse
.a_is_sparse
: An optionalbool
. Defaults toFalse
.b_is_sparse
: An optionalbool
. Defaults toFalse
.name
: A name for the operation (optional).
Returns:
A Tensor
of type float32
.