tf.strings.unicode_decode(
input,
input_encoding,
errors='replace',
replacement_char=65533,
replace_control_characters=False,
name=None
)
Defined in tensorflow/python/ops/ragged/ragged_string_ops.py
.
Decodes each string in input
into a sequence of Unicode code points.
result[i1...iN, j]
is the Unicode codepoint for the j
th character in
input[i1...iN]
, when decoded using input_encoding
.
Args:
input
: AnN
dimensional potentially raggedstring
tensor with shape[D1...DN]
.N
must be statically known.input_encoding
: String name for the unicode encoding that should be used to decode each string.errors
: Specifies the response when an input string can't be converted using the indicated encoding. One of:'strict'
: Raise an exception for any illegal substrings.'replace'
: Replace illegal substrings withreplacement_char
.'ignore'
: Skip illegal substrings.
replacement_char
: The replacement codepoint to be used in place of invalid substrings ininput
whenerrors='replace'
; and in place of C0 control characters ininput
whenreplace_control_characters=True
.replace_control_characters
: Whether to replace the C0 control characters(U+0000 - U+001F)
with thereplacement_char
.name
: A name for the operation (optional).
Returns:
A N+1
dimensional int32
tensor with shape [D1...DN, (num_chars)]
.
The returned tensor is a tf.Tensor
if input
is a scalar, or a
tf.RaggedTensor
otherwise.
Example:
>>> input = [s.encode('utf8') for s in (u'G\xf6\xf6dnight', u'\U0001f60a')] >>> tf.strings.unicode_decode(input, 'UTF-8').tolist() [[71, 246, 246, 100, 110, 105, 103, 104, 116], [128522]]