Class MomentumOptimizer
Inherits From: Optimizer
Defined in tensorflow/python/training/momentum.py.
Optimizer that implements the Momentum algorithm.
Computes (if use_nesterov = False):
accumulation = momentum * accumulation + gradient
variable -= learning_rate * accumulation
Note that in the dense version of this algorithm, accumulation is updated
and applied regardless of a gradient's value, whereas the sparse version (when
the gradient is an IndexedSlices, typically because of tf.gather or an
embedding) only updates variable slices and corresponding accumulation terms
when that part of the variable was used in the forward pass.
__init__
__init__(
learning_rate,
momentum,
use_locking=False,
name='Momentum',
use_nesterov=False
)
Construct a new Momentum optimizer.
Args:
learning_rate: ATensoror a floating point value. The learning rate.momentum: ATensoror a floating point value. The momentum.use_locking: IfTrueuse locks for update operations.name: Optional name prefix for the operations created when applying gradients. Defaults to "Momentum".use_nesterov: IfTrueuse Nesterov Momentum. See Sutskever et al., 2013. This implementation always computes gradients at the value of the variable(s) passed to the optimizer. Using Nesterov Momentum makes the variable(s) track the values calledtheta_t + mu*v_tin the paper. This implementation is an approximation of the original formula, valid for high values of momentum. It will compute the "adjusted gradient" in NAG by assuming that the new gradient will be estimated by the current average gradient plus the product of momentum and the change in the average gradient.
Eager Compatibility
When eager execution is enabled, learning_rate and momentum can each be
a callable that takes no arguments and returns the actual value to use. This
can be useful for changing these values across different invocations of
optimizer functions.
Methods
tf.train.MomentumOptimizer.apply_gradients
apply_gradients(
grads_and_vars,
global_step=None,
name=None
)
Apply gradients to variables.
This is the second part of minimize(). It returns an Operation that
applies gradients.
Args:
grads_and_vars: List of (gradient, variable) pairs as returned bycompute_gradients().global_step: OptionalVariableto increment by one after the variables have been updated.name: Optional name for the returned operation. Default to the name passed to theOptimizerconstructor.
Returns:
An Operation that applies the specified gradients. If global_step
was not None, that operation also increments global_step.
Raises:
TypeError: Ifgrads_and_varsis malformed.ValueError: If none of the variables have gradients.RuntimeError: If you should use_distributed_apply()instead.
tf.train.MomentumOptimizer.compute_gradients
compute_gradients(
loss,
var_list=None,
gate_gradients=GATE_OP,
aggregation_method=None,
colocate_gradients_with_ops=False,
grad_loss=None
)
Compute gradients of loss for the variables in var_list.
This is the first part of minimize(). It returns a list
of (gradient, variable) pairs where "gradient" is the gradient
for "variable". Note that "gradient" can be a Tensor, an
IndexedSlices, or None if there is no gradient for the
given variable.
Args:
loss: A Tensor containing the value to minimize or a callable taking no arguments which returns the value to minimize. When eager execution is enabled it must be a callable.var_list: Optional list or tuple oftf.Variableto update to minimizeloss. Defaults to the list of variables collected in the graph under the keyGraphKeys.TRAINABLE_VARIABLES.gate_gradients: How to gate the computation of gradients. Can beGATE_NONE,GATE_OP, orGATE_GRAPH.aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the classAggregationMethod.colocate_gradients_with_ops: If True, try colocating gradients with the corresponding op.grad_loss: Optional. ATensorholding the gradient computed forloss.
Returns:
A list of (gradient, variable) pairs. Variable is always present, but
gradient can be None.
Raises:
TypeError: Ifvar_listcontains anything else thanVariableobjects.ValueError: If some arguments are invalid.RuntimeError: If called with eager execution enabled andlossis not callable.
Eager Compatibility
When eager execution is enabled, gate_gradients, aggregation_method,
and colocate_gradients_with_ops are ignored.
tf.train.MomentumOptimizer.get_name
get_name()
tf.train.MomentumOptimizer.get_slot
get_slot(
var,
name
)
Return a slot named name created for var by the Optimizer.
Some Optimizer subclasses use additional variables. For example
Momentum and Adagrad use variables to accumulate updates. This method
gives access to these Variable objects if for some reason you need them.
Use get_slot_names() to get the list of slot names created by the
Optimizer.
Args:
var: A variable passed tominimize()orapply_gradients().name: A string.
Returns:
The Variable for the slot if it was created, None otherwise.
tf.train.MomentumOptimizer.get_slot_names
get_slot_names()
Return a list of the names of slots created by the Optimizer.
See get_slot().
Returns:
A list of strings.
tf.train.MomentumOptimizer.minimize
minimize(
loss,
global_step=None,
var_list=None,
gate_gradients=GATE_OP,
aggregation_method=None,
colocate_gradients_with_ops=False,
name=None,
grad_loss=None
)
Add operations to minimize loss by updating var_list.
This method simply combines calls compute_gradients() and
apply_gradients(). If you want to process the gradient before applying
them call compute_gradients() and apply_gradients() explicitly instead
of using this function.
Args:
loss: ATensorcontaining the value to minimize.global_step: OptionalVariableto increment by one after the variables have been updated.var_list: Optional list or tuple ofVariableobjects to update to minimizeloss. Defaults to the list of variables collected in the graph under the keyGraphKeys.TRAINABLE_VARIABLES.gate_gradients: How to gate the computation of gradients. Can beGATE_NONE,GATE_OP, orGATE_GRAPH.aggregation_method: Specifies the method used to combine gradient terms. Valid values are defined in the classAggregationMethod.colocate_gradients_with_ops: If True, try colocating gradients with the corresponding op.name: Optional name for the returned operation.grad_loss: Optional. ATensorholding the gradient computed forloss.
Returns:
An Operation that updates the variables in var_list. If global_step
was not None, that operation also increments global_step.
Raises:
ValueError: If some of the variables are notVariableobjects.
Eager Compatibility
When eager execution is enabled, loss should be a Python function that
takes no arguments and computes the value to be minimized. Minimization (and
gradient computation) is done with respect to the elements of var_list if
not None, else with respect to any trainable variables created during the
execution of the loss function. gate_gradients, aggregation_method,
colocate_gradients_with_ops and grad_loss are ignored when eager
execution is enabled.
tf.train.MomentumOptimizer.variables
variables()
A list of variables which encode the current state of Optimizer.
Includes slot variables and additional global variables created by the optimizer in the current default graph.
Returns:
A list of variables.