Class VocabInfo
Aliases:
- Class
tf.estimator.VocabInfo
- Class
tf.train.VocabInfo
Defined in tensorflow/python/training/warm_starting_util.py
.
Vocabulary information for warm-starting.
See tf.estimator.WarmStartSettings
for examples of using
VocabInfo to warm-start.
Attributes:
new_vocab
: [Required] A path to the new vocabulary file (used with the model to be trained).new_vocab_size
: [Required] An integer indicating how many entries of the new vocabulary will used in training.num_oov_buckets
: [Required] An integer indicating how many OOV buckets are associated with the vocabulary.old_vocab
: [Required] A path to the old vocabulary file (used with the checkpoint to be warm-started from).old_vocab_size
: [Optional] An integer indicating how many entries of the old vocabulary were used in the creation of the checkpoint. If not provided, the entire old vocabulary will be used.backup_initializer
: [Optional] A variable initializer used for variables corresponding to new vocabulary entries and OOV. If not provided, these entries will be zero-initialized.axis
: [Optional] Denotes what axis the vocabulary corresponds to. The default, 0, corresponds to the most common use case (embeddings or linear weights for binary classification / regression). An axis of 1 could be used for warm-starting output layers with class vocabularies.For example:
embeddings_vocab_info = tf.VocabInfo( new_vocab='embeddings_vocab', new_vocab_size=100, num_oov_buckets=1, old_vocab='pretrained_embeddings_vocab', old_vocab_size=10000, backup_initializer=tf.truncated_normal_initializer( mean=0.0, stddev=(1 / math.sqrt(embedding_dim))), axis=0)
softmax_output_layer_kernel_vocab_info = tf.VocabInfo( new_vocab='class_vocab', new_vocab_size=5, num_oov_buckets=0, # No OOV for classes. old_vocab='old_class_vocab', old_vocab_size=8, backup_initializer=tf.glorot_uniform_initializer(), axis=1)
softmax_output_layer_bias_vocab_info = tf.VocabInfo( new_vocab='class_vocab', new_vocab_size=5, num_oov_buckets=0, # No OOV for classes. old_vocab='old_class_vocab', old_vocab_size=8, backup_initializer=tf.zeros_initializer(), axis=0)
Currently, only axis=0 and axis=1 are supported.
__new__
@staticmethod
__new__(
cls,
new_vocab,
new_vocab_size,
num_oov_buckets,
old_vocab,
old_vocab_size=-1,
backup_initializer=None,
axis=0
)
Create new instance of VocabInfo(new_vocab, new_vocab_size, num_oov_buckets, old_vocab, old_vocab_size, backup_initializer, axis)