tf.train.input_producer(
input_tensor,
element_shape=None,
num_epochs=None,
shuffle=True,
seed=None,
capacity=32,
shared_name=None,
summary_name=None,
name=None,
cancel_op=None
)
Defined in tensorflow/python/training/input.py
.
Output the rows of input_tensor
to a queue for an input pipeline. (deprecated)
Args:
input_tensor
: A tensor with the rows to produce. Must be at least one-dimensional. Must either have a fully-defined shape, orelement_shape
must be defined.element_shape
: (Optional.) ATensorShape
representing the shape of a row ofinput_tensor
, if it cannot be inferred.num_epochs
: (Optional.) An integer. If specifiedinput_producer
produces each row ofinput_tensor
num_epochs
times before generating anOutOfRange
error. If not specified,input_producer
can cycle through the rows ofinput_tensor
an unlimited number of times.shuffle
: (Optional.) A boolean. If true, the rows are randomly shuffled within each epoch.seed
: (Optional.) An integer. The seed to use ifshuffle
is true.capacity
: (Optional.) The capacity of the queue to be used for buffering the input.shared_name
: (Optional.) If set, this queue will be shared under the given name across multiple sessions.summary_name
: (Optional.) If set, a scalar summary for the current queue size will be generated, using this name as part of the tag.name
: (Optional.) A name for queue.cancel_op
: (Optional.) Cancel op for the queue
Returns:
A queue with the output rows. A QueueRunner
for the queue is
added to the current QUEUE_RUNNER
collection of the current
graph.
Raises:
ValueError
: If the shape of the input cannot be inferred from the arguments.RuntimeError
: If called with eager execution enabled.
Eager Compatibility
Input pipelines based on Queues are not supported when eager execution is
enabled. Please use the tf.data
API to ingest data under eager execution.