tf.train.input_producer(
input_tensor,
element_shape=None,
num_epochs=None,
shuffle=True,
seed=None,
capacity=32,
shared_name=None,
summary_name=None,
name=None,
cancel_op=None
)
Defined in tensorflow/python/training/input.py.
Output the rows of input_tensor to a queue for an input pipeline. (deprecated)
Args:
input_tensor: A tensor with the rows to produce. Must be at least one-dimensional. Must either have a fully-defined shape, orelement_shapemust be defined.element_shape: (Optional.) ATensorShaperepresenting the shape of a row ofinput_tensor, if it cannot be inferred.num_epochs: (Optional.) An integer. If specifiedinput_producerproduces each row ofinput_tensornum_epochstimes before generating anOutOfRangeerror. If not specified,input_producercan cycle through the rows ofinput_tensoran unlimited number of times.shuffle: (Optional.) A boolean. If true, the rows are randomly shuffled within each epoch.seed: (Optional.) An integer. The seed to use ifshuffleis true.capacity: (Optional.) The capacity of the queue to be used for buffering the input.shared_name: (Optional.) If set, this queue will be shared under the given name across multiple sessions.summary_name: (Optional.) If set, a scalar summary for the current queue size will be generated, using this name as part of the tag.name: (Optional.) A name for queue.cancel_op: (Optional.) Cancel op for the queue
Returns:
A queue with the output rows. A QueueRunner for the queue is
added to the current QUEUE_RUNNER collection of the current
graph.
Raises:
ValueError: If the shape of the input cannot be inferred from the arguments.RuntimeError: If called with eager execution enabled.
Eager Compatibility
Input pipelines based on Queues are not supported when eager execution is
enabled. Please use the tf.data API to ingest data under eager execution.