View source on GitHub
|
Clips tensor values to a specified min and max.
tf.clip_by_value(
t, clip_value_min, clip_value_max, name=None
)
Given a tensor t, this operation returns a tensor of the same type and
shape as t with its values clipped to clip_value_min and clip_value_max.
Any values less than clip_value_min are set to clip_value_min. Any values
greater than clip_value_max are set to clip_value_max.
Note: clip_value_min needs to be smaller or equal to clip_value_max for
correct results.
A = tf.constant([[1, 20, 13], [3, 21, 13]])
B = tf.clip_by_value(A, clip_value_min=0, clip_value_max=3) # [[1, 3, 3],[3, 3, 3]]
C = tf.clip_by_value(A, clip_value_min=0., clip_value_max=3.) # throws `TypeError`
as input and clip_values are of different dtype
t: A Tensor or IndexedSlices.clip_value_min: A 0-D (scalar) Tensor, or a Tensor with the same shape
as t. The minimum value to clip by.clip_value_max: A 0-D (scalar) Tensor, or a Tensor with the same shape
as t. The maximum value to clip by.name: A name for the operation (optional).A clipped Tensor or IndexedSlices.
ValueError: If the clip tensors would trigger array broadcasting
that would make the returned tensor larger than the input.TypeError: If dtype of the input is int32 and dtype of
the clip_value_min or clip_value_max is float32