View source on GitHub |
Represents the value of one dimension in a TensorShape.
tf.compat.v1.Dimension(
value
)
value
: The value of this dimension, or None if it is unknown.__add__
__add__(
other
)
Returns the sum of self
and other
.
Dimensions are summed as follows:
tf.compat.v1.Dimension(m) + tf.compat.v1.Dimension(n) ==
tf.compat.v1.Dimension(m + n)
tf.compat.v1.Dimension(m) + tf.compat.v1.Dimension(None) # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) + tf.compat.v1.Dimension(n) # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) + tf.compat.v1.Dimension(None) # equiv. to
tf.compat.v1.Dimension(None)
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension whose value is the sum of self
and other
.
__div__
__div__(
other
)
DEPRECATED: Use __floordiv__
via x // y
instead.
This function exists only for backwards compatibility purposes; new code
should use __floordiv__
via the syntax x // y
. Using x // y
communicates clearly that the result rounds down, and is forward compatible
to Python 3.
other
: Another Dimension
.A Dimension
whose value is the integer quotient of self
and other
.
__eq__
__eq__(
other
)
Returns true if other
has the same known value as this Dimension.
__floordiv__
__floordiv__(
other
)
Returns the quotient of self
and other
rounded down.
Dimensions are divided as follows:
tf.compat.v1.Dimension(m) // tf.compat.v1.Dimension(n) ==
tf.compat.v1.Dimension(m // n)
tf.compat.v1.Dimension(m) // tf.compat.v1.Dimension(None) # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) // tf.compat.v1.Dimension(n) # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) // tf.compat.v1.Dimension(None) # equiv. to
tf.compat.v1.Dimension(None)
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension
whose value is the integer quotient of self
and other
.
__ge__
__ge__(
other
)
Returns True if self
is known to be greater than or equal to other
.
Dimensions are compared as follows:
(tf.compat.v1.Dimension(m) >= tf.compat.v1.Dimension(n)) == (m >= n)
(tf.compat.v1.Dimension(m) >= tf.compat.v1.Dimension(None)) == None
(tf.compat.v1.Dimension(None) >= tf.compat.v1.Dimension(n)) == None
(tf.compat.v1.Dimension(None) >= tf.compat.v1.Dimension(None)) == None
other
: Another Dimension.The value of self.value >= other.value
if both are known, otherwise
None.
__gt__
__gt__(
other
)
Returns True if self
is known to be greater than other
.
Dimensions are compared as follows:
(tf.compat.v1.Dimension(m) > tf.compat.v1.Dimension(n)) == (m > n)
(tf.compat.v1.Dimension(m) > tf.compat.v1.Dimension(None)) == None
(tf.compat.v1.Dimension(None) > tf.compat.v1.Dimension(n)) == None
(tf.compat.v1.Dimension(None) > tf.compat.v1.Dimension(None)) == None
other
: Another Dimension.The value of self.value > other.value
if both are known, otherwise
None.
__le__
__le__(
other
)
Returns True if self
is known to be less than or equal to other
.
Dimensions are compared as follows:
(tf.compat.v1.Dimension(m) <= tf.compat.v1.Dimension(n)) == (m <= n)
(tf.compat.v1.Dimension(m) <= tf.compat.v1.Dimension(None)) == None
(tf.compat.v1.Dimension(None) <= tf.compat.v1.Dimension(n)) == None
(tf.compat.v1.Dimension(None) <= tf.compat.v1.Dimension(None)) == None
other
: Another Dimension.The value of self.value <= other.value
if both are known, otherwise
None.
__lt__
__lt__(
other
)
Returns True if self
is known to be less than other
.
Dimensions are compared as follows:
(tf.compat.v1.Dimension(m) < tf.compat.v1.Dimension(n)) == (m < n)
(tf.compat.v1.Dimension(m) < tf.compat.v1.Dimension(None)) == None
(tf.compat.v1.Dimension(None) < tf.compat.v1.Dimension(n)) == None
(tf.compat.v1.Dimension(None) < tf.compat.v1.Dimension(None)) == None
other
: Another Dimension.The value of self.value < other.value
if both are known, otherwise
None.
__mod__
__mod__(
other
)
Returns self
modulo other
.
Dimension moduli are computed as follows:
tf.compat.v1.Dimension(m) % tf.compat.v1.Dimension(n) ==
tf.compat.v1.Dimension(m % n)
tf.compat.v1.Dimension(m) % tf.compat.v1.Dimension(None) # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) % tf.compat.v1.Dimension(n) # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) % tf.compat.v1.Dimension(None) # equiv. to
tf.compat.v1.Dimension(None)
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension whose value is self
modulo other
.
__mul__
__mul__(
other
)
Returns the product of self
and other
.
Dimensions are summed as follows:
tf.compat.v1.Dimension(m) * tf.compat.v1.Dimension(n) ==
tf.compat.v1.Dimension(m * n)
tf.compat.v1.Dimension(m) * tf.compat.v1.Dimension(None) # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) * tf.compat.v1.Dimension(n) # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) * tf.compat.v1.Dimension(None) # equiv. to
tf.compat.v1.Dimension(None)
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension whose value is the product of self
and other
.
__ne__
__ne__(
other
)
Returns true if other
has a different known value from self
.
__radd__
__radd__(
other
)
Returns the sum of other
and self
.
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension whose value is the sum of self
and other
.
__rdiv__
__rdiv__(
other
)
Use __floordiv__
via x // y
instead.
This function exists only to have a better error message. Instead of:
TypeError: unsupported operand type(s) for /: 'int' and 'Dimension'
,
this function will explicitly call for usage of //
instead.
other
: Another Dimension
.TypeError.
__rfloordiv__
__rfloordiv__(
other
)
Returns the quotient of other
and self
rounded down.
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension
whose value is the integer quotient of self
and other
.
__rmod__
__rmod__(
other
)
Returns other
modulo self
.
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension whose value is other
modulo self
.
__rmul__
__rmul__(
other
)
Returns the product of self
and other
.
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension whose value is the product of self
and other
.
__rsub__
__rsub__(
other
)
Returns the subtraction of self
from other
.
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension whose value is the subtraction of self
from other
.
__rtruediv__
__rtruediv__(
other
)
Use __floordiv__
via x // y
instead.
This function exists only to have a better error message. Instead of:
TypeError: unsupported operand type(s) for /: 'int' and 'Dimension'
,
this function will explicitly call for usage of //
instead.
other
: Another Dimension
.TypeError.
__sub__
__sub__(
other
)
Returns the subtraction of other
from self
.
Dimensions are subtracted as follows:
tf.compat.v1.Dimension(m) - tf.compat.v1.Dimension(n) ==
tf.compat.v1.Dimension(m - n)
tf.compat.v1.Dimension(m) - tf.compat.v1.Dimension(None) # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) - tf.compat.v1.Dimension(n) # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) - tf.compat.v1.Dimension(None) # equiv. to
tf.compat.v1.Dimension(None)
other
: Another Dimension, or a value accepted by as_dimension
.A Dimension whose value is the subtraction of other
from self
.
__truediv__
__truediv__(
other
)
Use __floordiv__
via x // y
instead.
This function exists only to have a better error message. Instead of:
TypeError: unsupported operand type(s) for /: 'Dimension' and 'int'
,
this function will explicitly call for usage of //
instead.
other
: Another Dimension
.TypeError.
assert_is_compatible_with
assert_is_compatible_with(
other
)
Raises an exception if other
is not compatible with this Dimension.
other
: Another Dimension.ValueError
: If self
and other
are not compatible (see
is_compatible_with).is_compatible_with
is_compatible_with(
other
)
Returns true if other
is compatible with this Dimension.
Two known Dimensions are compatible if they have the same value. An unknown Dimension is compatible with all other Dimensions.
other
: Another Dimension.True if this Dimension and other
are compatible.
merge_with
merge_with(
other
)
Returns a Dimension that combines the information in self
and other
.
Dimensions are combined as follows:
tf.compat.v1.Dimension(n) .merge_with(tf.compat.v1.Dimension(n)) ==
tf.compat.v1.Dimension(n)
tf.compat.v1.Dimension(n) .merge_with(tf.compat.v1.Dimension(None)) ==
tf.compat.v1.Dimension(n)
tf.compat.v1.Dimension(None).merge_with(tf.compat.v1.Dimension(n)) ==
tf.compat.v1.Dimension(n)
# equivalent to tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None).merge_with(tf.compat.v1.Dimension(None))
# raises ValueError for n != m
tf.compat.v1.Dimension(n) .merge_with(tf.compat.v1.Dimension(m))
other
: Another Dimension.A Dimension containing the combined information of self
and
other
.
ValueError
: If self
and other
are not compatible (see
is_compatible_with).