tf.compat.v1.Dimension

View source on GitHub

Represents the value of one dimension in a TensorShape.

tf.compat.v1.Dimension(
    value
)

Attributes:

Methods

__add__

View source

__add__(
    other
)

Returns the sum of self and other.

Dimensions are summed as follows:

tf.compat.v1.Dimension(m)    + tf.compat.v1.Dimension(n)     ==
tf.compat.v1.Dimension(m + n)
tf.compat.v1.Dimension(m)    + tf.compat.v1.Dimension(None)  # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) + tf.compat.v1.Dimension(n)     # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) + tf.compat.v1.Dimension(None)  # equiv. to
tf.compat.v1.Dimension(None)

Args:

Returns:

A Dimension whose value is the sum of self and other.

__div__

View source

__div__(
    other
)

DEPRECATED: Use __floordiv__ via x // y instead.

This function exists only for backwards compatibility purposes; new code should use __floordiv__ via the syntax x // y. Using x // y communicates clearly that the result rounds down, and is forward compatible to Python 3.

Args:

Returns:

A Dimension whose value is the integer quotient of self and other.

__eq__

View source

__eq__(
    other
)

Returns true if other has the same known value as this Dimension.

__floordiv__

View source

__floordiv__(
    other
)

Returns the quotient of self and other rounded down.

Dimensions are divided as follows:

tf.compat.v1.Dimension(m)    // tf.compat.v1.Dimension(n)     ==
tf.compat.v1.Dimension(m // n)
tf.compat.v1.Dimension(m)    // tf.compat.v1.Dimension(None)  # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) // tf.compat.v1.Dimension(n)     # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) // tf.compat.v1.Dimension(None)  # equiv. to
tf.compat.v1.Dimension(None)

Args:

Returns:

A Dimension whose value is the integer quotient of self and other.

__ge__

View source

__ge__(
    other
)

Returns True if self is known to be greater than or equal to other.

Dimensions are compared as follows:

(tf.compat.v1.Dimension(m)    >= tf.compat.v1.Dimension(n))    == (m >= n)
(tf.compat.v1.Dimension(m)    >= tf.compat.v1.Dimension(None)) == None
(tf.compat.v1.Dimension(None) >= tf.compat.v1.Dimension(n))    == None
(tf.compat.v1.Dimension(None) >= tf.compat.v1.Dimension(None)) == None

Args:

Returns:

The value of self.value >= other.value if both are known, otherwise None.

__gt__

View source

__gt__(
    other
)

Returns True if self is known to be greater than other.

Dimensions are compared as follows:

(tf.compat.v1.Dimension(m)    > tf.compat.v1.Dimension(n))    == (m > n)
(tf.compat.v1.Dimension(m)    > tf.compat.v1.Dimension(None)) == None
(tf.compat.v1.Dimension(None) > tf.compat.v1.Dimension(n))    == None
(tf.compat.v1.Dimension(None) > tf.compat.v1.Dimension(None)) == None

Args:

Returns:

The value of self.value > other.value if both are known, otherwise None.

__le__

View source

__le__(
    other
)

Returns True if self is known to be less than or equal to other.

Dimensions are compared as follows:

(tf.compat.v1.Dimension(m)    <= tf.compat.v1.Dimension(n))    == (m <= n)
(tf.compat.v1.Dimension(m)    <= tf.compat.v1.Dimension(None)) == None
(tf.compat.v1.Dimension(None) <= tf.compat.v1.Dimension(n))    == None
(tf.compat.v1.Dimension(None) <= tf.compat.v1.Dimension(None)) == None

Args:

Returns:

The value of self.value <= other.value if both are known, otherwise None.

__lt__

View source

__lt__(
    other
)

Returns True if self is known to be less than other.

Dimensions are compared as follows:

(tf.compat.v1.Dimension(m)    < tf.compat.v1.Dimension(n))    == (m < n)
(tf.compat.v1.Dimension(m)    < tf.compat.v1.Dimension(None)) == None
(tf.compat.v1.Dimension(None) < tf.compat.v1.Dimension(n))    == None
(tf.compat.v1.Dimension(None) < tf.compat.v1.Dimension(None)) == None

Args:

Returns:

The value of self.value < other.value if both are known, otherwise None.

__mod__

View source

__mod__(
    other
)

Returns self modulo other.

Dimension moduli are computed as follows:

tf.compat.v1.Dimension(m)    % tf.compat.v1.Dimension(n)     ==
tf.compat.v1.Dimension(m % n)
tf.compat.v1.Dimension(m)    % tf.compat.v1.Dimension(None)  # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) % tf.compat.v1.Dimension(n)     # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) % tf.compat.v1.Dimension(None)  # equiv. to
tf.compat.v1.Dimension(None)

Args:

Returns:

A Dimension whose value is self modulo other.

__mul__

View source

__mul__(
    other
)

Returns the product of self and other.

Dimensions are summed as follows:

tf.compat.v1.Dimension(m)    * tf.compat.v1.Dimension(n)     ==
tf.compat.v1.Dimension(m * n)
tf.compat.v1.Dimension(m)    * tf.compat.v1.Dimension(None)  # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) * tf.compat.v1.Dimension(n)     # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) * tf.compat.v1.Dimension(None)  # equiv. to
tf.compat.v1.Dimension(None)

Args:

Returns:

A Dimension whose value is the product of self and other.

__ne__

View source

__ne__(
    other
)

Returns true if other has a different known value from self.

__radd__

View source

__radd__(
    other
)

Returns the sum of other and self.

Args:

Returns:

A Dimension whose value is the sum of self and other.

__rdiv__

View source

__rdiv__(
    other
)

Use __floordiv__ via x // y instead.

This function exists only to have a better error message. Instead of: TypeError: unsupported operand type(s) for /: 'int' and 'Dimension', this function will explicitly call for usage of // instead.

Args:

Raises:

TypeError.

__rfloordiv__

View source

__rfloordiv__(
    other
)

Returns the quotient of other and self rounded down.

Args:

Returns:

A Dimension whose value is the integer quotient of self and other.

__rmod__

View source

__rmod__(
    other
)

Returns other modulo self.

Args:

Returns:

A Dimension whose value is other modulo self.

__rmul__

View source

__rmul__(
    other
)

Returns the product of self and other.

Args:

Returns:

A Dimension whose value is the product of self and other.

__rsub__

View source

__rsub__(
    other
)

Returns the subtraction of self from other.

Args:

Returns:

A Dimension whose value is the subtraction of self from other.

__rtruediv__

View source

__rtruediv__(
    other
)

Use __floordiv__ via x // y instead.

This function exists only to have a better error message. Instead of: TypeError: unsupported operand type(s) for /: 'int' and 'Dimension', this function will explicitly call for usage of // instead.

Args:

Raises:

TypeError.

__sub__

View source

__sub__(
    other
)

Returns the subtraction of other from self.

Dimensions are subtracted as follows:

tf.compat.v1.Dimension(m)    - tf.compat.v1.Dimension(n)     ==
tf.compat.v1.Dimension(m - n)
tf.compat.v1.Dimension(m)    - tf.compat.v1.Dimension(None)  # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) - tf.compat.v1.Dimension(n)     # equiv. to
tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None) - tf.compat.v1.Dimension(None)  # equiv. to
tf.compat.v1.Dimension(None)

Args:

Returns:

A Dimension whose value is the subtraction of other from self.

__truediv__

View source

__truediv__(
    other
)

Use __floordiv__ via x // y instead.

This function exists only to have a better error message. Instead of: TypeError: unsupported operand type(s) for /: 'Dimension' and 'int', this function will explicitly call for usage of // instead.

Args:

Raises:

TypeError.

assert_is_compatible_with

View source

assert_is_compatible_with(
    other
)

Raises an exception if other is not compatible with this Dimension.

Args:

Raises:

is_compatible_with

View source

is_compatible_with(
    other
)

Returns true if other is compatible with this Dimension.

Two known Dimensions are compatible if they have the same value. An unknown Dimension is compatible with all other Dimensions.

Args:

Returns:

True if this Dimension and other are compatible.

merge_with

View source

merge_with(
    other
)

Returns a Dimension that combines the information in self and other.

Dimensions are combined as follows:

tf.compat.v1.Dimension(n)   .merge_with(tf.compat.v1.Dimension(n))     ==
tf.compat.v1.Dimension(n)
tf.compat.v1.Dimension(n)   .merge_with(tf.compat.v1.Dimension(None))  ==
tf.compat.v1.Dimension(n)
tf.compat.v1.Dimension(None).merge_with(tf.compat.v1.Dimension(n))     ==
tf.compat.v1.Dimension(n)
# equivalent to tf.compat.v1.Dimension(None)
tf.compat.v1.Dimension(None).merge_with(tf.compat.v1.Dimension(None))

# raises ValueError for n != m
tf.compat.v1.Dimension(n)   .merge_with(tf.compat.v1.Dimension(m))

Args:

Returns:

A Dimension containing the combined information of self and other.

Raises: