View source on GitHub |
Returns the index with the smallest value across axes of a tensor. (deprecated arguments)
tf.compat.v1.argmin(
input, axis=None, name=None, dimension=None, output_type=tf.dtypes.int64
)
Warning: SOME ARGUMENTS ARE DEPRECATED: (dimension)
. They will be removed in a future version.
Instructions for updating:
Use the axis
argument instead
Note that in case of ties the identity of the return value is not guaranteed.
import tensorflow as tf
a = [1, 10, 26.9, 2.8, 166.32, 62.3]
b = tf.math.argmin(input = a)
c = tf.keras.backend.eval(b)
# c = 0
# here a[0] = 1 which is the smallest element of a across axis 0
input
: A Tensor
. Must be one of the following types: float32
, float64
, int32
, uint8
, int16
, int8
, complex64
, int64
, qint8
, quint8
, qint32
, bfloat16
, uint16
, complex128
, half
, uint32
, uint64
.axis
: A Tensor
. Must be one of the following types: int32
, int64
.
int32 or int64, must be in the range [-rank(input), rank(input))
.
Describes which axis of the input Tensor to reduce across. For vectors,
use axis = 0.output_type
: An optional tf.DType
from: tf.int32, tf.int64
. Defaults to tf.int64
.name
: A name for the operation (optional).A Tensor
of type output_type
.