tf.compat.v1.assert_near

View source on GitHub

Assert the condition x and y are close element-wise.

tf.compat.v1.assert_near(
    x, y, rtol=None, atol=None, data=None, summarize=None, message=None, name=None
)

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.compat.v1.assert_near(x, y)]):
  output = tf.reduce_sum(x)

This condition holds if for every pair of (possibly broadcast) elements x[i], y[i], we have

tf.abs(x[i] - y[i]) <= atol + rtol * tf.abs(y[i]).

If both x and y are empty, this is trivially satisfied.

The default atol and rtol is 10 * eps, where eps is the smallest representable positive number such that 1 + eps != 1. This is about 1.2e-6 in 32bit, 2.22e-15 in 64bit, and 0.00977 in 16bit. See numpy.finfo.

Args:

Returns:

Op that raises InvalidArgumentError if x and y are not close enough.

Numpy Compatibility

Similar to numpy.assert_allclose, except tolerance depends on data type. This is due to the fact that TensorFlow is often used with 32bit, 64bit, and even 16bit data.