View source on GitHub |
Converts the given value
to a Tensor
.
tf.compat.v1.convert_to_tensor(
value, dtype=None, name=None, preferred_dtype=None, dtype_hint=None
)
This function converts Python objects of various types to Tensor
objects. It accepts Tensor
objects, numpy arrays, Python lists,
and Python scalars. For example:
import numpy as np
def my_func(arg):
arg = tf.convert_to_tensor(arg, dtype=tf.float32)
return tf.matmul(arg, arg) + arg
# The following calls are equivalent.
value_1 = my_func(tf.constant([[1.0, 2.0], [3.0, 4.0]]))
value_2 = my_func([[1.0, 2.0], [3.0, 4.0]])
value_3 = my_func(np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32))
This function can be useful when composing a new operation in Python
(such as my_func
in the example above). All standard Python op
constructors apply this function to each of their Tensor-valued
inputs, which allows those ops to accept numpy arrays, Python lists,
and scalars in addition to Tensor
objects.
Note: This function diverges from default Numpy behavior for float
and
string
types when None
is present in a Python list or scalar. Rather
than silently converting None
values, an error will be thrown.
value
: An object whose type has a registered Tensor
conversion function.dtype
: Optional element type for the returned tensor. If missing, the type
is inferred from the type of value
.name
: Optional name to use if a new Tensor
is created.preferred_dtype
: Optional element type for the returned tensor, used when
dtype is None. In some cases, a caller may not have a dtype in mind when
converting to a tensor, so preferred_dtype can be used as a soft
preference. If the conversion to preferred_dtype
is not possible, this
argument has no effect.dtype_hint
: same meaning as preferred_dtype, and overrides it.A Tensor
based on value
.
TypeError
: If no conversion function is registered for value
to dtype
.RuntimeError
: If a registered conversion function returns an invalid value.ValueError
: If the value
is a tensor not of given dtype
in graph mode.