View source on GitHub |
Represents the state of iterating through a Dataset
.
tf.compat.v1.data.Iterator(
iterator_resource, initializer, output_types, output_shapes, output_classes
)
iterator_resource
: A tf.resource
scalar tf.Tensor
representing the
iterator.initializer
: A tf.Operation
that should be run to initialize this
iterator.output_types
: A nested structure of tf.DType
objects corresponding to
each component of an element of this iterator.output_shapes
: A nested structure of tf.TensorShape
objects
corresponding to each component of an element of this iterator.output_classes
: A nested structure of Python type
objects corresponding
to each component of an element of this iterator.element_spec
: The type specification of an element of this iterator.
initializer
: A tf.Operation
that should be run to initialize this iterator.
output_classes
: Returns the class of each component of an element of this iterator. (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use tf.compat.v1.data.get_output_classes(iterator)
.
The expected values are tf.Tensor
and tf.SparseTensor
.
output_shapes
: Returns the shape of each component of an element of this iterator. (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use tf.compat.v1.data.get_output_shapes(iterator)
.
output_types
: Returns the type of each component of an element of this iterator. (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use tf.compat.v1.data.get_output_types(iterator)
.
from_string_handle
@staticmethod
from_string_handle(
string_handle, output_types, output_shapes=None, output_classes=None
)
Creates a new, uninitialized Iterator
based on the given handle.
This method allows you to define a "feedable" iterator where you can choose
between concrete iterators by feeding a value in a tf.Session.run
call.
In that case, string_handle
would be a tf.compat.v1.placeholder
, and you
would
feed it with the value of tf.data.Iterator.string_handle
in each step.
For example, if you had two iterators that marked the current position in a training dataset and a test dataset, you could choose which to use in each step as follows:
train_iterator = tf.data.Dataset(...).make_one_shot_iterator()
train_iterator_handle = sess.run(train_iterator.string_handle())
test_iterator = tf.data.Dataset(...).make_one_shot_iterator()
test_iterator_handle = sess.run(test_iterator.string_handle())
handle = tf.compat.v1.placeholder(tf.string, shape=[])
iterator = tf.data.Iterator.from_string_handle(
handle, train_iterator.output_types)
next_element = iterator.get_next()
loss = f(next_element)
train_loss = sess.run(loss, feed_dict={handle: train_iterator_handle})
test_loss = sess.run(loss, feed_dict={handle: test_iterator_handle})
string_handle
: A scalar tf.Tensor
of type tf.string
that evaluates to
a handle produced by the Iterator.string_handle()
method.output_types
: A nested structure of tf.DType
objects corresponding to
each component of an element of this dataset.output_shapes
: (Optional.) A nested structure of tf.TensorShape
objects
corresponding to each component of an element of this dataset. If
omitted, each component will have an unconstrainted shape.output_classes
: (Optional.) A nested structure of Python type
objects
corresponding to each component of an element of this iterator. If
omitted, each component is assumed to be of type tf.Tensor
.An Iterator
.
from_structure
@staticmethod
from_structure(
output_types, output_shapes=None, shared_name=None, output_classes=None
)
Creates a new, uninitialized Iterator
with the given structure.
This iterator-constructing method can be used to create an iterator that is reusable with many different datasets.
The returned iterator is not bound to a particular dataset, and it has
no initializer
. To initialize the iterator, run the operation returned by
Iterator.make_initializer(dataset)
.
The following is an example
iterator = Iterator.from_structure(tf.int64, tf.TensorShape([]))
dataset_range = Dataset.range(10)
range_initializer = iterator.make_initializer(dataset_range)
dataset_evens = dataset_range.filter(lambda x: x % 2 == 0)
evens_initializer = iterator.make_initializer(dataset_evens)
# Define a model based on the iterator; in this example, the model_fn
# is expected to take scalar tf.int64 Tensors as input (see
# the definition of 'iterator' above).
prediction, loss = model_fn(iterator.get_next())
# Train for `num_epochs`, where for each epoch, we first iterate over
# dataset_range, and then iterate over dataset_evens.
for _ in range(num_epochs):
# Initialize the iterator to `dataset_range`
sess.run(range_initializer)
while True:
try:
pred, loss_val = sess.run([prediction, loss])
except tf.errors.OutOfRangeError:
break
# Initialize the iterator to `dataset_evens`
sess.run(evens_initializer)
while True:
try:
pred, loss_val = sess.run([prediction, loss])
except tf.errors.OutOfRangeError:
break
output_types
: A nested structure of tf.DType
objects corresponding to
each component of an element of this dataset.output_shapes
: (Optional.) A nested structure of tf.TensorShape
objects
corresponding to each component of an element of this dataset. If
omitted, each component will have an unconstrainted shape.shared_name
: (Optional.) If non-empty, this iterator will be shared under
the given name across multiple sessions that share the same devices
(e.g. when using a remote server).output_classes
: (Optional.) A nested structure of Python type
objects
corresponding to each component of an element of this iterator. If
omitted, each component is assumed to be of type tf.Tensor
.An Iterator
.
TypeError
: If the structures of output_shapes
and output_types
are
not the same.get_next
get_next(
name=None
)
Returns a nested structure of tf.Tensor
s representing the next element.
In graph mode, you should typically call this method once and use its
result as the input to another computation. A typical loop will then call
tf.Session.run
on the result of that computation. The loop will terminate
when the Iterator.get_next()
operation raises
tf.errors.OutOfRangeError
. The following skeleton shows how to use
this method when building a training loop:
dataset = ... # A `tf.data.Dataset` object.
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()
# Build a TensorFlow graph that does something with each element.
loss = model_function(next_element)
optimizer = ... # A `tf.compat.v1.train.Optimizer` object.
train_op = optimizer.minimize(loss)
with tf.compat.v1.Session() as sess:
try:
while True:
sess.run(train_op)
except tf.errors.OutOfRangeError:
pass
NOTE: It is legitimate to call Iterator.get_next()
multiple times, e.g.
when you are distributing different elements to multiple devices in a single
step. However, a common pitfall arises when users call Iterator.get_next()
in each iteration of their training loop. Iterator.get_next()
adds ops to
the graph, and executing each op allocates resources (including threads); as
a consequence, invoking it in every iteration of a training loop causes
slowdown and eventual resource exhaustion. To guard against this outcome, we
log a warning when the number of uses crosses a fixed threshold of
suspiciousness.
name
: (Optional.) A name for the created operation.A nested structure of tf.Tensor
objects.
make_initializer
make_initializer(
dataset, name=None
)
Returns a tf.Operation
that initializes this iterator on dataset
.
dataset
: A Dataset
with compatible structure to this iterator.name
: (Optional.) A name for the created operation.A tf.Operation
that can be run to initialize this iterator on the given
dataset
.
TypeError
: If dataset
and this iterator do not have a compatible
element structure.string_handle
string_handle(
name=None
)
Returns a string-valued tf.Tensor
that represents this iterator.
name
: (Optional.) A name for the created operation.