tf.compat.v1.distribute.StrategyExtended

View source on GitHub

Additional APIs for algorithms that need to be distribution-aware.

Inherits From: StrategyExtended

tf.compat.v1.distribute.StrategyExtended(
    container_strategy
)

Note: For most usage of tf.distribute.Strategy, there should be no need to call these methods, since TensorFlow libraries (such as optimizers) already call these methods when needed on your behalf.

Lower-level concepts:

Replica context vs. Cross-replica context

replica context is when we are in some function that is being called once for each replica. Otherwise we are in cross-replica context, which is useful for calling tf.distribute.Strategy methods which operate across the replicas (like reduce_to()). By default you start in a replica context (the "default single replica context") and then some methods can switch you back and forth. There is a third mode you can be in called update context used when updating variables.

In a replica context, you may freely read the values of variables, but you may only update their value if they specify a way to aggregate the update using the aggregation parameter in the variable's constructor. In a cross-replica context, you may read or write variables (writes may need to be broadcast to all copies of the variable if it is mirrored).

Sync on read variables

In some cases, such as a metric, we want to accumulate a bunch of updates on each replica independently and only aggregate when reading. This can be a big performance win when the value is read only rarely (maybe the value is only read at the end of an epoch or when checkpointing). These are variables created by passing synchronization=ON_READ to the variable's constructor (and some value for aggregation).

The strategy may choose to put the variable on multiple devices, like mirrored variables, but unlike mirrored variables we don't synchronize the updates to them to make sure they have the same value. Instead, the synchronization is performed when reading in cross-replica context. In a replica context, reads and writes are performed on the local copy (we allow reads so you can write code like v = 0.9*v + 0.1*update). We don't allow operations like v.assign_add in a cross-replica context for sync on read variables; right now we don't have a use case for such updates and depending on the aggregation mode such updates may not be sensible.

Locality

Depending on how a value is produced, it will have a type that will determine how it may be used.

"Per-replica" values exist on the worker devices, with a different value for each replica. They are produced by iterating through a "distributed Dataset" returned by tf.distribute.Strategy.experimental_distribute_dataset and tf.distribute.Strategy.experimental_distribute_datasets_from_function. They are also the typical result returned by tf.distribute.Strategy.experimental_run_v2. You typically can't use a per-replica value directly in a cross-replica context, without first resolving how to aggregate the values across replicas, for instance by using tf.distribute.Strategy.reduce.

"Mirrored" values are like per-replica values, except we know that the value on all replicas are the same. We can safely read a mirrored value in a cross-replica context by using the value on any replica. You can convert a per-replica value into a mirrored value by using tf.distribute.ReplicaContext.all_reduce.

Values can also have the same locality as a variable, which is a mirrored value but residing on the same devices as the variable (as opposed to the compute devices). Such values may be passed to a call to tf.distribute.StrategyExtended.update to update the value of a variable. You may use tf.distribute.StrategyExtended.colocate_vars_with to give a variable the same locality as another variable. This is useful, for example, for "slot" variables used by an optimizer for keeping track of statistics used to update a primary/model variable. You may convert a per-replica value to a variable's locality by using tf.distribute.StrategyExtended.reduce_to or tf.distribute.StrategyExtended.batch_reduce_to.

In addition to slot variables which should be colocated with their primary variables, optimizers also define non-slot variables. These can be things like "number of step updates performed" or "beta1t" and "beta2t". Each strategy has some policy for which devices those variables should be copied too, called the "non-slot devices" (some subset of the parameter devices). We require that all non-slot variables are allocated on the same device, or mirrored across the same set of devices. You can use tf.distribute.StrategyExtended.non_slot_devices to pick a consistent set of devices to pass to both tf.distribute.StrategyExtended.colocate_vars_with and tf.distribute.StrategyExtended.update_non_slot.

How to update a variable

The standard pattern for updating variables is to:

  1. In your function passed to tf.distribute.Strategy.experimental_run_v2, compute a list of (update, variable) pairs. For example, the update might be a the gradient of the loss with respect to the variable.
  2. Switch to cross-replica mode by calling tf.distribute.get_replica_context().merge_call() with the updates and variables as arguments.
  3. Call tf.distribute.StrategyExtended.reduce_to(VariableAggregation.SUM, t, v) (for one variable) or tf.distribute.StrategyExtended.batch_reduce_to (for a list of variables) to sum the updates. and broadcast the result to the variable's devices.
  4. Call tf.distribute.StrategyExtended.update(v) for each variable to update its value.

Steps 2 through 4 are done automatically by class tf.keras.optimizers.Optimizer if you call its tf.keras.optimizers.Optimizer.apply_gradients method in a replica context. They are also done automatically if you call an assign* method on a (non sync-on-read) variable that was constructed with an aggregation method (which is used to determine the reduction used in step 3).

Distribute-aware layers

Layers are generally called in a replica context, except when defining a functional model. tf.distribute.in_cross_replica_context will let you determine which case you are in. If in a replica context, the tf.distribute.get_replica_context function will return a tf.distribute.ReplicaContext object. The ReplicaContext object has an all_reduce method for aggregating across all replicas. Alternatively, you can update variables following steps 2-4 above.

Note: For new tf.distribute.Strategy implementations, please put all logic in a subclass of tf.distribute.StrategyExtended. The only code needed for the tf.distribute.Strategy subclass is for instantiating your subclass of tf.distribute.StrategyExtended in the __init__ method.

Attributes:

Methods

batch_reduce_to

View source

batch_reduce_to(
    reduce_op, value_destination_pairs
)

Combine multiple reduce_to calls into one for faster execution.

Args:

Returns:

A list of mirrored values, one per pair in value_destination_pairs.

broadcast_to

View source

broadcast_to(
    tensor, destinations
)

Mirror a tensor on one device to all worker devices.

Args:

Returns:

A value mirrored to destinations devices.

call_for_each_replica

View source

call_for_each_replica(
    fn, args=(), kwargs=None
)

Run fn once per replica.

fn may call tf.get_replica_context() to access methods such as replica_id_in_sync_group and merge_call().

merge_call() is used to communicate between the replicas and re-enter the cross-replica context. All replicas pause their execution having encountered a merge_call() call. After that the merge_fn-function is executed. Its results are then unwrapped and given back to each replica call. After that execution resumes until fn is complete or encounters another merge_call(). Example:

# Called once in "cross-replica" context.
def merge_fn(distribution, three_plus_replica_id):
  # sum the values across replicas
  return sum(distribution.experimental_local_results(three_plus_replica_id))

# Called once per replica in `distribution`, in a "replica" context.
def fn(three):
  replica_ctx = tf.get_replica_context()
  v = three + replica_ctx.replica_id_in_sync_group
  # Computes the sum of the `v` values across all replicas.
  s = replica_ctx.merge_call(merge_fn, args=(v,))
  return s + v

with distribution.scope():
  # in "cross-replica" context
  ...
  merged_results = distribution.experimental_run_v2(fn, args=[3])
  # merged_results has the values from every replica execution of `fn`.
  # This statement prints a list:
  print(distribution.experimental_local_results(merged_results))

Args:

Returns:

Merged return value of fn across all replicas.

colocate_vars_with

View source

colocate_vars_with(
    colocate_with_variable
)

Scope that controls which devices variables will be created on.

No operations should be added to the graph inside this scope, it should only be used when creating variables (some implementations work by changing variable creation, others work by using a tf.compat.v1.colocate_with() scope).

This may only be used inside self.scope().

Example usage:

with strategy.scope():
  var1 = tf.Variable(...)
  with strategy.extended.colocate_vars_with(var1):
    # var2 and var3 will be created on the same device(s) as var1
    var2 = tf.Variable(...)
    var3 = tf.Variable(...)

  def fn(v1, v2, v3):
    # operates on v1 from var1, v2 from var2, and v3 from var3

  # `fn` runs on every device `var1` is on, `var2` and `var3` will be there
  # too.
  strategy.extended.update(var1, fn, args=(var2, var3))

Args:

Returns:

A context manager.

experimental_make_numpy_dataset

View source

experimental_make_numpy_dataset(
    numpy_input, session=None
)

Makes a dataset for input provided via a numpy array.

This avoids adding numpy_input as a large constant in the graph, and copies the data to the machine or machines that will be processing the input.

Args:

Returns:

A tf.data.Dataset representing numpy_input.

experimental_run_steps_on_iterator

View source

experimental_run_steps_on_iterator(
    fn, iterator, iterations=1, initial_loop_values=None
)

DEPRECATED: please use experimental_run_v2 instead.

Run fn with input from iterator for iterations times.

This method can be used to run a step function for training a number of times using input from a dataset.

Args:

Returns:

Returns the MultiStepContext object which has the following properties, among other things: - run_op: An op that runs fn iterations times. - last_step_outputs: A dictionary containing tensors set using context.set_last_step_output. Evaluating this returns the value of the tensors after the last iteration. - non_tensor_outputs: A dictionatry containing anything that was set by fn by calling context.set_non_tensor_output.

non_slot_devices

View source

non_slot_devices(
    var_list
)

Device(s) for non-slot variables.

Create variables on these devices in a with colocate_vars_with(non_slot_devices(...)): block. Update those using update_non_slot().

Args:

Returns:

A sequence of devices for non-slot variables.

read_var

View source

read_var(
    v
)

Reads the value of a variable.

Returns the aggregate value of a replica-local variable, or the (read-only) value of any other variable.

Args:

Returns:

A tensor representing the value of v, aggregated across replicas if necessary.

reduce_to

View source

reduce_to(
    reduce_op, value, destinations
)

Combine (via e.g. sum or mean) values across replicas.

Args:

Returns:

A tensor or value mirrored to destinations.

update

View source

update(
    var, fn, args=(), kwargs=None, group=True
)

Run fn to update var using inputs mirrored to the same devices.

If var is mirrored across multiple devices, then this implements logic like:

results = {}
for device, v in var:
  with tf.device(device):
    # args and kwargs will be unwrapped if they are mirrored.
    results[device] = fn(v, *args, **kwargs)
return merged(results)

Otherwise this returns fn(var, *args, **kwargs) colocated with var.

Neither args nor kwargs may contain per-replica values. If they contain mirrored values, they will be unwrapped before calling fn.

Args:

Returns:

By default, the merged return value of fn across all replicas. The merged result has dependencies to make sure that if it is evaluated at all, the side effects (updates) will happen on every replica. If instead "group=False" is specified, this function will return a nest of lists where each list has an element per replica, and the caller is responsible for ensuring all elements are executed.

update_non_slot

View source

update_non_slot(
    colocate_with, fn, args=(), kwargs=None, group=True
)

Runs fn(*args, **kwargs) on colocate_with devices.

Args:

Returns:

Return value of fn, possibly merged across devices.

value_container

View source

value_container(
    value
)

Returns the container that this per-replica value belongs to.

Args:

Returns:

A container that value belongs to. If value does not belong to any container (including the case of container having been destroyed), returns the value itself. value in experimental_local_results(value_container(value)) will always be true.

variable_created_in_scope

View source

variable_created_in_scope(
    v
)

Tests whether v was created while this strategy scope was active.

Variables created inside the strategy scope are "owned" by it:

strategy = tf.distribute.StrategyExtended()
with strategy.scope():
  v = tf.Variable(1.)
strategy.variable_created_in_scope(v)
True

Variables created outside the strategy are not owned by it:

v = tf.Variable(1.)
strategy.variable_created_in_scope(v)
False

Args:

Returns:

True if v was created inside the scope, False if not.