View source on GitHub |
Multinomial distribution.
Inherits From: Distribution
tf.compat.v1.distributions.Multinomial(
total_count, logits=None, probs=None, validate_args=False, allow_nan_stats=True,
name='Multinomial'
)
This Multinomial distribution is parameterized by probs
, a (batch of)
length-K
prob
(probability) vectors (K > 1
) such that
tf.reduce_sum(probs, -1) = 1
, and a total_count
number of trials, i.e.,
the number of trials per draw from the Multinomial. It is defined over a
(batch of) length-K
vector counts
such that
tf.reduce_sum(counts, -1) = total_count
. The Multinomial is identically the
Binomial distribution when K = 2
.
The Multinomial is a distribution over K
-class counts, i.e., a length-K
vector of non-negative integer counts = n = [n_0, ..., n_{K-1}]
.
The probability mass function (pmf) is,
pmf(n; pi, N) = prod_j (pi_j)**n_j / Z
Z = (prod_j n_j!) / N!
where:
* probs = pi = [pi_0, ..., pi_{K-1}]
, pi_j > 0
, sum_j pi_j = 1
,
* total_count = N
, N
a positive integer,
* Z
is the normalization constant, and,
* N!
denotes N
factorial.
Distribution parameters are automatically broadcast in all functions; see examples for details.
The number of classes, K
, must not exceed:
- the largest integer representable by self.dtype
, i.e.,
2**(mantissa_bits+1)
(IEE754),
- the maximum Tensor
index, i.e., 2**31-1
.
In other words,
K <= min(2**31-1, {
tf.float16: 2**11,
tf.float32: 2**24,
tf.float64: 2**53 }[param.dtype])
Note: This condition is validated only when self.validate_args = True
.
Create a 3-class distribution, with the 3rd class is most likely to be drawn, using logits.
logits = [-50., -43, 0]
dist = Multinomial(total_count=4., logits=logits)
Create a 3-class distribution, with the 3rd class is most likely to be drawn.
p = [.2, .3, .5]
dist = Multinomial(total_count=4., probs=p)
The distribution functions can be evaluated on counts.
# counts same shape as p.
counts = [1., 0, 3]
dist.prob(counts) # Shape []
# p will be broadcast to [[.2, .3, .5], [.2, .3, .5]] to match counts.
counts = [[1., 2, 1], [2, 2, 0]]
dist.prob(counts) # Shape [2]
# p will be broadcast to shape [5, 7, 3] to match counts.
counts = [[...]] # Shape [5, 7, 3]
dist.prob(counts) # Shape [5, 7]
Create a 2-batch of 3-class distributions.
p = [[.1, .2, .7], [.3, .3, .4]] # Shape [2, 3]
dist = Multinomial(total_count=[4., 5], probs=p)
counts = [[2., 1, 1], [3, 1, 1]]
dist.prob(counts) # Shape [2]
dist.sample(5) # Shape [5, 2, 3]
total_count
: Non-negative floating point tensor with shape broadcastable
to [N1,..., Nm]
with m >= 0
. Defines this as a batch of
N1 x ... x Nm
different Multinomial distributions. Its components
should be equal to integer values.logits
: Floating point tensor representing unnormalized log-probabilities
of a positive event with shape broadcastable to
[N1,..., Nm, K]
m >= 0
, and the same dtype as total_count
. Defines
this as a batch of N1 x ... x Nm
different K
class Multinomial
distributions. Only one of logits
or probs
should be passed in.probs
: Positive floating point tensor with shape broadcastable to
[N1,..., Nm, K]
m >= 0
and same dtype as total_count
. Defines
this as a batch of N1 x ... x Nm
different K
class Multinomial
distributions. probs
's components in the last portion of its shape
should sum to 1
. Only one of logits
or probs
should be passed in.validate_args
: Python bool
, default False
. When True
distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False
invalid inputs may silently render incorrect
outputs.allow_nan_stats
: Python bool
, default True
. When True
, statistics
(e.g., mean, mode, variance) use the value "NaN
" to indicate the
result is undefined. When False
, an exception is raised if one or
more of the statistic's batch members are undefined.name
: Python str
name prefixed to Ops created by this class.allow_nan_stats
: Python bool
describing behavior when a stat is undefined.
Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined.
batch_shape
: Shape of a single sample from a single event index as a TensorShape
.
May be partially defined or unknown.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
dtype
: The DType
of Tensor
s handled by this Distribution
.
event_shape
: Shape of a single sample from a single batch as a TensorShape
.
May be partially defined or unknown.
logits
: Vector of coordinatewise logits.
name
: Name prepended to all ops created by this Distribution
.
parameters
: Dictionary of parameters used to instantiate this Distribution
.
probs
: Probability of drawing a 1
in that coordinate.
reparameterization_type
: Describes how samples from the distribution are reparameterized.
Currently this is one of the static instances
distributions.FULLY_REPARAMETERIZED
or distributions.NOT_REPARAMETERIZED
.
total_count
: Number of trials used to construct a sample.
validate_args
: Python bool
indicating possibly expensive checks are enabled.
batch_shape_tensor
batch_shape_tensor(
name='batch_shape_tensor'
)
Shape of a single sample from a single event index as a 1-D Tensor
.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
name
: name to give to the opbatch_shape
: Tensor
.cdf
cdf(
value, name='cdf'
)
Cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
cdf(x) := P[X <= x]
value
: float
or double
Tensor
.name
: Python str
prepended to names of ops created by this function.cdf
: a Tensor
of shape sample_shape(x) + self.batch_shape
with
values of type self.dtype
.copy
copy(
**override_parameters_kwargs
)
Creates a deep copy of the distribution.
Note: the copy distribution may continue to depend on the original initialization arguments.
**override_parameters_kwargs
: String/value dictionary of initialization
arguments to override with new values.distribution
: A new instance of type(self)
initialized from the union
of self.parameters and override_parameters_kwargs, i.e.,
dict(self.parameters, **override_parameters_kwargs)
.covariance
covariance(
name='covariance'
)
Covariance.
Covariance is (possibly) defined only for non-scalar-event distributions.
For example, for a length-k
, vector-valued distribution, it is calculated
as,
Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
where Cov
is a (batch of) k x k
matrix, 0 <= (i, j) < k
, and E
denotes expectation.
Alternatively, for non-vector, multivariate distributions (e.g.,
matrix-valued, Wishart), Covariance
shall return a (batch of) matrices
under some vectorization of the events, i.e.,
Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
where Cov
is a (batch of) k' x k'
matrices,
0 <= (i, j) < k' = reduce_prod(event_shape)
, and Vec
is some function
mapping indices of this distribution's event dimensions to indices of a
length-k'
vector.
name
: Python str
prepended to names of ops created by this function.covariance
: Floating-point Tensor
with shape [B1, ..., Bn, k', k']
where the first n
dimensions are batch coordinates and
k' = reduce_prod(self.event_shape)
.cross_entropy
cross_entropy(
other, name='cross_entropy'
)
Computes the (Shannon) cross entropy.
Denote this distribution (self
) by P
and the other
distribution by
Q
. Assuming P, Q
are absolutely continuous with respect to
one another and permit densities p(x) dr(x)
and q(x) dr(x)
, (Shanon)
cross entropy is defined as:
H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)
where F
denotes the support of the random variable X ~ P
.
other
: tfp.distributions.Distribution
instance.name
: Python str
prepended to names of ops created by this function.cross_entropy
: self.dtype
Tensor
with shape [B1, ..., Bn]
representing n
different calculations of (Shanon) cross entropy.entropy
entropy(
name='entropy'
)
Shannon entropy in nats.
event_shape_tensor
event_shape_tensor(
name='event_shape_tensor'
)
Shape of a single sample from a single batch as a 1-D int32 Tensor
.
name
: name to give to the opevent_shape
: Tensor
.is_scalar_batch
is_scalar_batch(
name='is_scalar_batch'
)
Indicates that batch_shape == []
.
name
: Python str
prepended to names of ops created by this function.is_scalar_batch
: bool
scalar Tensor
.is_scalar_event
is_scalar_event(
name='is_scalar_event'
)
Indicates that event_shape == []
.
name
: Python str
prepended to names of ops created by this function.is_scalar_event
: bool
scalar Tensor
.kl_divergence
kl_divergence(
other, name='kl_divergence'
)
Computes the Kullback--Leibler divergence.
Denote this distribution (self
) by p
and the other
distribution by
q
. Assuming p, q
are absolutely continuous with respect to reference
measure r
, the KL divergence is defined as:
KL[p, q] = E_p[log(p(X)/q(X))]
= -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
= H[p, q] - H[p]
where F
denotes the support of the random variable X ~ p
, H[., .]
denotes (Shanon) cross entropy, and H[.]
denotes (Shanon) entropy.
other
: tfp.distributions.Distribution
instance.name
: Python str
prepended to names of ops created by this function.kl_divergence
: self.dtype
Tensor
with shape [B1, ..., Bn]
representing n
different calculations of the Kullback-Leibler
divergence.log_cdf
log_cdf(
value, name='log_cdf'
)
Log cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
log_cdf(x) := Log[ P[X <= x] ]
Often, a numerical approximation can be used for log_cdf(x)
that yields
a more accurate answer than simply taking the logarithm of the cdf
when
x << -1
.
value
: float
or double
Tensor
.name
: Python str
prepended to names of ops created by this function.logcdf
: a Tensor
of shape sample_shape(x) + self.batch_shape
with
values of type self.dtype
.log_prob
log_prob(
value, name='log_prob'
)
Log probability density/mass function.
Additional documentation from Multinomial
:
For each batch of counts, value = [n_0, ...
,n_{k-1}]
, P[value]
is the probability that after sampling self.total_count
draws from this Multinomial distribution, the number of draws falling in class
j
is n_j
. Since this definition is exchangeable; different
sequences have the same counts so the probability includes a combinatorial
coefficient.
Note: value
must be a non-negative tensor with dtype self.dtype
, have no
fractional components, and such that
tf.reduce_sum(value, -1) = self.total_count
. Its shape must be broadcastable
with self.probs
and self.total_count
.
value
: float
or double
Tensor
.name
: Python str
prepended to names of ops created by this function.log_prob
: a Tensor
of shape sample_shape(x) + self.batch_shape
with
values of type self.dtype
.log_survival_function
log_survival_function(
value, name='log_survival_function'
)
Log survival function.
Given random variable X
, the survival function is defined:
log_survival_function(x) = Log[ P[X > x] ]
= Log[ 1 - P[X <= x] ]
= Log[ 1 - cdf(x) ]
Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x)
when x >> 1
.
value
: float
or double
Tensor
.name
: Python str
prepended to names of ops created by this function.Tensor
of shape sample_shape(x) + self.batch_shape
with values of type
self.dtype
.
mean
mean(
name='mean'
)
Mean.
mode
mode(
name='mode'
)
Mode.
param_shapes
@classmethod
param_shapes(
sample_shape, name='DistributionParamShapes'
)
Shapes of parameters given the desired shape of a call to sample()
.
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution
so that a particular shape is
returned for that instance's call to sample()
.
Subclasses should override class method _param_shapes
.
sample_shape
: Tensor
or python list/tuple. Desired shape of a call to
sample()
.name
: name to prepend ops with.dict
of parameter name to Tensor
shapes.
param_static_shapes
@classmethod
param_static_shapes(
sample_shape
)
param_shapes with static (i.e. TensorShape
) shapes.
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution
so that a particular shape is
returned for that instance's call to sample()
. Assumes that the sample's
shape is known statically.
Subclasses should override class method _param_shapes
to return
constant-valued tensors when constant values are fed.
sample_shape
: TensorShape
or python list/tuple. Desired shape of a call
to sample()
.dict
of parameter name to TensorShape
.
ValueError
: if sample_shape
is a TensorShape
and is not fully defined.prob
prob(
value, name='prob'
)
Probability density/mass function.
value
: float
or double
Tensor
.name
: Python str
prepended to names of ops created by this function.prob
: a Tensor
of shape sample_shape(x) + self.batch_shape
with
values of type self.dtype
.quantile
quantile(
value, name='quantile'
)
Quantile function. Aka "inverse cdf" or "percent point function".
Given random variable X
and p in [0, 1]
, the quantile
is:
quantile(p) := x such that P[X <= x] == p
value
: float
or double
Tensor
.name
: Python str
prepended to names of ops created by this function.quantile
: a Tensor
of shape sample_shape(x) + self.batch_shape
with
values of type self.dtype
.sample
sample(
sample_shape=(), seed=None, name='sample'
)
Generate samples of the specified shape.
Note that a call to sample()
without arguments will generate a single
sample.
sample_shape
: 0D or 1D int32
Tensor
. Shape of the generated samples.seed
: Python integer seed for RNGname
: name to give to the op.samples
: a Tensor
with prepended dimensions sample_shape
.stddev
stddev(
name='stddev'
)
Standard deviation.
Standard deviation is defined as,
stddev = E[(X - E[X])**2]**0.5
where X
is the random variable associated with this distribution, E
denotes expectation, and stddev.shape = batch_shape + event_shape
.
name
: Python str
prepended to names of ops created by this function.stddev
: Floating-point Tensor
with shape identical to
batch_shape + event_shape
, i.e., the same shape as self.mean()
.survival_function
survival_function(
value, name='survival_function'
)
Survival function.
Given random variable X
, the survival function is defined:
survival_function(x) = P[X > x]
= 1 - P[X <= x]
= 1 - cdf(x).
value
: float
or double
Tensor
.name
: Python str
prepended to names of ops created by this function.Tensor
of shape sample_shape(x) + self.batch_shape
with values of type
self.dtype
.
variance
variance(
name='variance'
)
Variance.
Variance is defined as,
Var = E[(X - E[X])**2]
where X
is the random variable associated with this distribution, E
denotes expectation, and Var.shape = batch_shape + event_shape
.
name
: Python str
prepended to names of ops created by this function.variance
: Floating-point Tensor
with shape identical to
batch_shape + event_shape
, i.e., the same shape as self.mean()
.