tf.compat.v1.distributions.StudentT

View source on GitHub

Student's t-distribution.

Inherits From: Distribution

tf.compat.v1.distributions.StudentT(
    df, loc, scale, validate_args=False, allow_nan_stats=True, name='StudentT'
)

This distribution has parameters: degree of freedom df, location loc, and scale.

Mathematical details

The probability density function (pdf) is,

pdf(x; df, mu, sigma) = (1 + y**2 / df)**(-0.5 (df + 1)) / Z
where,
y = (x - mu) / sigma
Z = abs(sigma) sqrt(df pi) Gamma(0.5 df) / Gamma(0.5 (df + 1))

where: * loc = mu, * scale = sigma, and, * Z is the normalization constant, and, * Gamma is the gamma function.

The StudentT distribution is a member of the location-scale family, i.e., it can be constructed as,

X ~ StudentT(df, loc=0, scale=1)
Y = loc + scale * X

Notice that scale has semantics more similar to standard deviation than variance. However it is not actually the std. deviation; the Student's t-distribution std. dev. is scale sqrt(df / (df - 2)) when df > 2.

Samples of this distribution are reparameterized (pathwise differentiable). The derivatives are computed using the approach described in the paper

Michael Figurnov, Shakir Mohamed, Andriy Mnih. Implicit Reparameterization Gradients, 2018

Examples

Examples of initialization of one or a batch of distributions.

import tensorflow_probability as tfp
tfd = tfp.distributions

# Define a single scalar Student t distribution.
single_dist = tfd.StudentT(df=3)

# Evaluate the pdf at 1, returning a scalar Tensor.
single_dist.prob(1.)

# Define a batch of two scalar valued Student t's.
# The first has degrees of freedom 2, mean 1, and scale 11.
# The second 3, 2 and 22.
multi_dist = tfd.StudentT(df=[2, 3], loc=[1, 2.], scale=[11, 22.])

# Evaluate the pdf of the first distribution on 0, and the second on 1.5,
# returning a length two tensor.
multi_dist.prob([0, 1.5])

# Get 3 samples, returning a 3 x 2 tensor.
multi_dist.sample(3)

Arguments are broadcast when possible.

# Define a batch of two Student's t distributions.
# Both have df 2 and mean 1, but different scales.
dist = tfd.StudentT(df=2, loc=1, scale=[11, 22.])

# Evaluate the pdf of both distributions on the same point, 3.0,
# returning a length 2 tensor.
dist.prob(3.0)

Compute the gradients of samples w.r.t. the parameters:

df = tf.constant(2.0)
loc = tf.constant(2.0)
scale = tf.constant(11.0)
dist = tfd.StudentT(df=df, loc=loc, scale=scale)
samples = dist.sample(5)  # Shape [5]
loss = tf.reduce_mean(tf.square(samples))  # Arbitrary loss function
# Unbiased stochastic gradients of the loss function
grads = tf.gradients(loss, [df, loc, scale])

Args:

Attributes:

Raises:

Methods

batch_shape_tensor

View source

batch_shape_tensor(
    name='batch_shape_tensor'
)

Shape of a single sample from a single event index as a 1-D Tensor.

The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.

Args:

Returns:

cdf

View source

cdf(
    value, name='cdf'
)

Cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

cdf(x) := P[X <= x]

Args:

Returns:

copy

View source

copy(
    **override_parameters_kwargs
)

Creates a deep copy of the distribution.

Note: the copy distribution may continue to depend on the original initialization arguments.

Args:

Returns:

covariance

View source

covariance(
    name='covariance'
)

Covariance.

Covariance is (possibly) defined only for non-scalar-event distributions.

For example, for a length-k, vector-valued distribution, it is calculated as,

Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]

where Cov is a (batch of) k x k matrix, 0 <= (i, j) < k, and E denotes expectation.

Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), Covariance shall return a (batch of) matrices under some vectorization of the events, i.e.,

Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]

where Cov is a (batch of) k' x k' matrices, 0 <= (i, j) < k' = reduce_prod(event_shape), and Vec is some function mapping indices of this distribution's event dimensions to indices of a length-k' vector.

Args:

Returns:

cross_entropy

View source

cross_entropy(
    other, name='cross_entropy'
)

Computes the (Shannon) cross entropy.

Denote this distribution (self) by P and the other distribution by Q. Assuming P, Q are absolutely continuous with respect to one another and permit densities p(x) dr(x) and q(x) dr(x), (Shanon) cross entropy is defined as:

H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)

where F denotes the support of the random variable X ~ P.

Args:

Returns:

entropy

View source

entropy(
    name='entropy'
)

Shannon entropy in nats.

event_shape_tensor

View source

event_shape_tensor(
    name='event_shape_tensor'
)

Shape of a single sample from a single batch as a 1-D int32 Tensor.

Args:

Returns:

is_scalar_batch

View source

is_scalar_batch(
    name='is_scalar_batch'
)

Indicates that batch_shape == [].

Args:

Returns:

is_scalar_event

View source

is_scalar_event(
    name='is_scalar_event'
)

Indicates that event_shape == [].

Args:

Returns:

kl_divergence

View source

kl_divergence(
    other, name='kl_divergence'
)

Computes the Kullback--Leibler divergence.

Denote this distribution (self) by p and the other distribution by q. Assuming p, q are absolutely continuous with respect to reference measure r, the KL divergence is defined as:

KL[p, q] = E_p[log(p(X)/q(X))]
         = -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
         = H[p, q] - H[p]

where F denotes the support of the random variable X ~ p, H[., .] denotes (Shanon) cross entropy, and H[.] denotes (Shanon) entropy.

Args:

Returns:

log_cdf

View source

log_cdf(
    value, name='log_cdf'
)

Log cumulative distribution function.

Given random variable X, the cumulative distribution function cdf is:

log_cdf(x) := Log[ P[X <= x] ]

Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1.

Args:

Returns:

log_prob

View source

log_prob(
    value, name='log_prob'
)

Log probability density/mass function.

Args:

Returns:

log_survival_function

View source

log_survival_function(
    value, name='log_survival_function'
)

Log survival function.

Given random variable X, the survival function is defined:

log_survival_function(x) = Log[ P[X > x] ]
                         = Log[ 1 - P[X <= x] ]
                         = Log[ 1 - cdf(x) ]

Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1.

Args:

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

mean

View source

mean(
    name='mean'
)

Mean.

Additional documentation from StudentT:

The mean of Student's T equals loc if df > 1, otherwise it is NaN. If self.allow_nan_stats=True, then an exception will be raised rather than returning NaN.

mode

View source

mode(
    name='mode'
)

Mode.

param_shapes

View source

@classmethod
param_shapes(
    sample_shape, name='DistributionParamShapes'
)

Shapes of parameters given the desired shape of a call to sample().

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample().

Subclasses should override class method _param_shapes.

Args:

Returns:

dict of parameter name to Tensor shapes.

param_static_shapes

View source

@classmethod
param_static_shapes(
    sample_shape
)

param_shapes with static (i.e. TensorShape) shapes.

This is a class method that describes what key/value arguments are required to instantiate the given Distribution so that a particular shape is returned for that instance's call to sample(). Assumes that the sample's shape is known statically.

Subclasses should override class method _param_shapes to return constant-valued tensors when constant values are fed.

Args:

Returns:

dict of parameter name to TensorShape.

Raises:

prob

View source

prob(
    value, name='prob'
)

Probability density/mass function.

Args:

Returns:

quantile

View source

quantile(
    value, name='quantile'
)

Quantile function. Aka "inverse cdf" or "percent point function".

Given random variable X and p in [0, 1], the quantile is:

quantile(p) := x such that P[X <= x] == p

Args:

Returns:

sample

View source

sample(
    sample_shape=(), seed=None, name='sample'
)

Generate samples of the specified shape.

Note that a call to sample() without arguments will generate a single sample.

Args:

Returns:

stddev

View source

stddev(
    name='stddev'
)

Standard deviation.

Standard deviation is defined as,

stddev = E[(X - E[X])**2]**0.5

where X is the random variable associated with this distribution, E denotes expectation, and stddev.shape = batch_shape + event_shape.

Args:

Returns:

survival_function

View source

survival_function(
    value, name='survival_function'
)

Survival function.

Given random variable X, the survival function is defined:

survival_function(x) = P[X > x]
                     = 1 - P[X <= x]
                     = 1 - cdf(x).

Args:

Returns:

Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

variance

View source

variance(
    name='variance'
)

Variance.

Variance is defined as,

Var = E[(X - E[X])**2]

where X is the random variable associated with this distribution, E denotes expectation, and Var.shape = batch_shape + event_shape.

Additional documentation from StudentT:

The variance for Student's T equals

df / (df - 2), when df > 2
infinity, when 1 < df <= 2
NaN, when df <= 1

Args:

Returns: