View source on GitHub |
A context manager for use when defining a Python op.
tf.compat.v1.keras.backend.name_scope(
name, default_name=None, values=None
)
This context manager validates that the given values
are from the
same graph, makes that graph the default graph, and pushes a
name scope in that graph (see
tf.Graph.name_scope
for more details on that).
For example, to define a new Python op called my_op
:
def my_op(a, b, c, name=None):
with tf.name_scope(name, "MyOp", [a, b, c]) as scope:
a = tf.convert_to_tensor(a, name="a")
b = tf.convert_to_tensor(b, name="b")
c = tf.convert_to_tensor(c, name="c")
# Define some computation that uses `a`, `b`, and `c`.
return foo_op(..., name=scope)
name
: The name argument that is passed to the op function.default_name
: The default name to use if the name
argument is None
.values
: The list of Tensor
arguments that are passed to the op function.name
TypeError
: if default_name
is passed in but not a string.__enter__
__enter__()
__exit__
__exit__(
*exc_info
)