tf.compat.v1.keras.initializers.Constant

View source on GitHub

Initializer that generates tensors with constant values.

Inherits From: Initializer

tf.compat.v1.keras.initializers.Constant(
    value=0, dtype=tf.dtypes.float32, verify_shape=False
)

The resulting tensor is populated with values of type dtype, as specified by arguments value following the desired shape of the new tensor (see examples below).

The argument value can be a constant value, or a list of values of type dtype. If value is a list, then the length of the list must be less than or equal to the number of elements implied by the desired shape of the tensor. In the case where the total number of elements in value is less than the number of elements required by the tensor shape, the last element in value will be used to fill the remaining entries. If the total number of elements in value is greater than the number of elements required by the tensor shape, the initializer will raise a ValueError.

Args:

Raises:

Examples:

The following example can be rewritten using a numpy.ndarray instead of the value list, even reshaped, as shown in the two commented lines below the value list initialization.

>>> value = [0, 1, 2, 3, 4, 5, 6, 7]
>>> init = tf.compat.v1.constant_initializer(value)
>>> # fitting shape
>>> with tf.compat.v1.Session():
...   x = tf.compat.v1.get_variable('x', shape=[2, 4], initializer=init)
...   x.initializer.run()
...   print(x.eval())
[[0. 1. 2. 3.]
 [4. 5. 6. 7.]]
>>> # Larger shape
>>> with tf.compat.v1.Session():
...   y = tf.compat.v1.get_variable('y', shape=[3, 4], initializer=init)
...   y.initializer.run()
...   print(y.eval())
[[0.  1.  2.  3.]
 [4.  5.  6.  7.]
 [7.  7.  7.  7.]]
>>> # Smaller shape
>>> with tf.compat.v1.Session():
...   z = tf.compat.v1.get_variable('z', shape=[2, 3], initializer=init)
Traceback (most recent call last):
...
ValueError: Too many elements provided. Needed at most 6, but received 8
>>> # Shape verification
>>> init_verify = tf.compat.v1.constant_initializer(value, verify_shape=True)
>>> with tf.compat.v1.Session():
...  u = tf.compat.v1.get_variable('u', shape=[3, 4],
...                                initializer=init_verify)
Traceback (most recent call last):
...
TypeError: Expected Tensor's shape: (3, 4), got (8,).

Methods

__call__

View source

__call__(
    shape, dtype=None, partition_info=None, verify_shape=None
)

Returns a tensor object initialized as specified by the initializer.

Args:

from_config

View source

@classmethod
from_config(
    config
)

Instantiates an initializer from a configuration dictionary.

Example:

initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)

Args:

Returns:

An Initializer instance.

get_config

View source

get_config()

Returns the configuration of the initializer as a JSON-serializable dict.

Returns:

A JSON-serializable Python dict.