View source on GitHub |
Initializer that generates a truncated normal distribution.
Inherits From: truncated_normal_initializer
tf.compat.v1.keras.initializers.TruncatedNormal(
mean=0.0, stddev=0.05, seed=None, dtype=tf.dtypes.float32
)
These values are similar to values from a random_normal_initializer
except that values more than two standard deviations from the mean
are discarded and re-drawn. This is the recommended initializer for
neural network weights and filters.
mean
: a python scalar or a scalar tensor. Mean of the random values to
generate. Defaults to 0.stddev
: a python scalar or a scalar tensor. Standard deviation of the random
values to generate. Defaults to 0.05.seed
: A Python integer. Used to create random seeds. See
tf.compat.v1.set_random_seed
for behavior.dtype
: The data type. Only floating point types are supported.A TruncatedNormal instance.
__call__
__call__(
shape, dtype=None, partition_info=None
)
Returns a tensor object initialized as specified by the initializer.
shape
: Shape of the tensor.dtype
: Optional dtype of the tensor. If not provided use the initializer
dtype.partition_info
: Optional information about the possible partitioning of a
tensor.from_config
@classmethod
from_config(
config
)
Instantiates an initializer from a configuration dictionary.
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
config
: A Python dictionary. It will typically be the output of
get_config
.An Initializer instance.
get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
A JSON-serializable Python dict.