tf.compat.v1.keras.layers.LSTMCell

View source on GitHub

Cell class for the LSTM layer.

Inherits From: Layer

tf.compat.v1.keras.layers.LSTMCell(
    units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True,
    kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal',
    bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None,
    recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None,
    recurrent_constraint=None, bias_constraint=None, dropout=0.0,
    recurrent_dropout=0.0, implementation=1, **kwargs
)

Arguments:

Call arguments:

Methods

get_dropout_mask_for_cell

View source

get_dropout_mask_for_cell(
    inputs, training, count=1
)

Get the dropout mask for RNN cell's input.

It will create mask based on context if there isn't any existing cached mask. If a new mask is generated, it will update the cache in the cell.

Args:

Returns:

List of mask tensor, generated or cached mask based on context.

get_initial_state

View source

get_initial_state(
    inputs=None, batch_size=None, dtype=None
)

get_recurrent_dropout_mask_for_cell

View source

get_recurrent_dropout_mask_for_cell(
    inputs, training, count=1
)

Get the recurrent dropout mask for RNN cell.

It will create mask based on context if there isn't any existing cached mask. If a new mask is generated, it will update the cache in the cell.

Args:

Returns:

List of mask tensor, generated or cached mask based on context.

reset_dropout_mask

View source

reset_dropout_mask()

Reset the cached dropout masks if any.

This is important for the RNN layer to invoke this in it call() method so that the cached mask is cleared before calling the cell.call(). The mask should be cached across the timestep within the same batch, but shouldn't be cached between batches. Otherwise it will introduce unreasonable bias against certain index of data within the batch.

reset_recurrent_dropout_mask

View source

reset_recurrent_dropout_mask()

Reset the cached recurrent dropout masks if any.

This is important for the RNN layer to invoke this in it call() method so that the cached mask is cleared before calling the cell.call(). The mask should be cached across the timestep within the same batch, but shouldn't be cached between batches. Otherwise it will introduce unreasonable bias against certain index of data within the batch.