View source on GitHub
|
Conceptually tracks indices of arguments of "OpHint functions".
tf.compat.v1.lite.OpHint.OpHintArgumentTracker(
function_name, unique_function_id, node_name_prefix, attr_name, level=1,
children_inputs_mappings=None
)
The inputs and arguments of these functions both use an instance of the class so they can have independent numbering.
function_name: Name of the function that this tracks arguments for.unique_function_id: UUID of function that this tracks arguments for.node_name_prefix: How identities that are created are named.attr_name: Name of attribute to use to store the index for this hint.
i.e. FUNCTION_INPUT_INDEX or FUNCTION_OUTPUT_INDEXlevel: Hierarchical level of the Ophint node, a number.children_inputs_mappings: Inputs/Outputs mapping for children hints.addadd(
arg, tag=None, name=None, aggregate=None, index_override=None
)
Return a wrapped tensor of an input tensor as an argument.
arg: A TensorFlow tensor that should be considered an argument.tag: String tag to identify arguments that should be packed.name: Name of argument. This is included in the Identity hint op names.aggregate: Strategy to aggregate.
Acceptable values are OpHint.AGGREGATE_FIRST, OpHint.AGGREGATE_LAST,
and OpHint.AGGREGATE_STACK.
Note, aggregate is only valid if tag is specified.index_override: Specify what input/output index should this be in the
final stub. i.e. add(arg0, index=1); add(arg1, index=0) will make the
final stub be as stub_func(inputs[arg1, arg0], outputs=[]) rather than
the default call order based ordering.A tensor representing the wrapped argument.
ValueError: When indices are not consistent.