tf.compat.v1.lookup.StaticHashTable

View source on GitHub

A generic hash table that is immutable once initialized.

Inherits From: StaticHashTable

tf.compat.v1.lookup.StaticHashTable(
    initializer, default_value, name=None
)

When running in graph mode, you must evaluate the tensor returned by tf.tables_initializer() before evaluating the tensor returned by this class's lookup() method. Example usage in graph mode:

keys_tensor = tf.constant([1, 2])
vals_tensor = tf.constant([3, 4])
input_tensor = tf.constant([1, 5])
table = tf.lookup.StaticHashTable(
    tf.lookup.KeyValueTensorInitializer(keys_tensor, vals_tensor), -1)
out = table.lookup(input_tensor)
with tf.Session() as sess:
    sess.run(tf.tables_initializer())
    print(sess.run(out))

In eager mode, no special code is needed to initialize the table. Example usage in eager mode:

tf.enable_eager_execution()
keys_tensor = tf.constant([1, 2])
vals_tensor = tf.constant([3, 4])
input_tensor = tf.constant([1, 5])
table = tf.lookup.StaticHashTable(
    tf.lookup.KeyValueTensorInitializer(keys_tensor, vals_tensor), -1)
print(table.lookup(input_tensor))

Args:

Attributes:

Methods

export

View source

export(
    name=None
)

Returns tensors of all keys and values in the table.

Args:

Returns:

A pair of tensors with the first tensor containing all keys and the second tensors containing all values in the table.

lookup

View source

lookup(
    keys, name=None
)

Looks up keys in a table, outputs the corresponding values.

The default_value is used for keys not present in the table.

Args:

Returns:

A SparseTensor if keys are sparse, otherwise a dense Tensor.

Raises:

size

View source

size(
    name=None
)

Compute the number of elements in this table.

Args:

Returns:

A scalar tensor containing the number of elements in this table.