Loss operations for use in neural networks.
Note: All the losses are added to the GraphKeys.LOSSES
collection by default.
class Reduction
: Types of loss reduction.
absolute_difference(...)
: Adds an Absolute Difference loss to the training procedure.
add_loss(...)
: Adds a externally defined loss to the collection of losses.
compute_weighted_loss(...)
: Computes the weighted loss.
cosine_distance(...)
: Adds a cosine-distance loss to the training procedure. (deprecated arguments)
get_losses(...)
: Gets the list of losses from the loss_collection.
get_regularization_loss(...)
: Gets the total regularization loss.
get_regularization_losses(...)
: Gets the list of regularization losses.
get_total_loss(...)
: Returns a tensor whose value represents the total loss.
hinge_loss(...)
: Adds a hinge loss to the training procedure.
huber_loss(...)
: Adds a Huber Loss term to the training procedure.
log_loss(...)
: Adds a Log Loss term to the training procedure.
mean_pairwise_squared_error(...)
: Adds a pairwise-errors-squared loss to the training procedure.
mean_squared_error(...)
: Adds a Sum-of-Squares loss to the training procedure.
sigmoid_cross_entropy(...)
: Creates a cross-entropy loss using tf.nn.sigmoid_cross_entropy_with_logits.
softmax_cross_entropy(...)
: Creates a cross-entropy loss using tf.nn.softmax_cross_entropy_with_logits_v2.
sparse_softmax_cross_entropy(...)
: Cross-entropy loss using tf.nn.sparse_softmax_cross_entropy_with_logits
.