View source on GitHub |
Draws samples from a multinomial distribution. (deprecated)
tf.compat.v1.multinomial(
logits, num_samples, seed=None, name=None, output_dtype=None
)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use tf.random.categorical
instead.
# samples has shape [1, 5], where each value is either 0 or 1 with equal
# probability.
samples = tf.random.categorical(tf.math.log([[0.5, 0.5]]), 5)
logits
: 2-D Tensor with shape [batch_size, num_classes]
. Each slice
[i, :]
represents the unnormalized log-probabilities for all classes.num_samples
: 0-D. Number of independent samples to draw for each row slice.seed
: A Python integer. Used to create a random seed for the distribution.
See tf.compat.v1.set_random_seed
for behavior.name
: Optional name for the operation.output_dtype
: integer type to use for the output. Defaults to int64.The drawn samples of shape [batch_size, num_samples]
.