View source on GitHub |
Computes the gradients of convolution with respect to the input.
tf.compat.v1.nn.conv2d_backprop_input(
input_sizes, filter=None, out_backprop=None, strides=None, padding=None,
use_cudnn_on_gpu=True, data_format='NHWC', dilations=[1, 1, 1, 1], name=None,
filters=None
)
input_sizes
: A Tensor
of type int32
.
An integer vector representing the shape of input
,
where input
is a 4-D [batch, height, width, channels]
tensor.filter
: A Tensor
. Must be one of the following types:
half
, bfloat16
, float32
, float64
.
4-D with shape
[filter_height, filter_width, in_channels, out_channels]
.out_backprop
: A Tensor
. Must have the same type as filter
.
4-D with shape [batch, out_height, out_width, out_channels]
.
Gradients w.r.t. the output of the convolution.strides
: A list of ints
.
The stride of the sliding window for each dimension of the input
of the convolution. Must be in the same order as the dimension specified
with format.padding
: Either the string
"SAME"or
"VALID"indicating the type of
padding algorithm to use, or a list indicating the explicit paddings at
the start and end of each dimension. When explicit padding is used and
data_format is
"NHWC", this should be in the form
[[0, 0], [pad_top,
pad_bottom], [pad_left, pad_right], [0, 0]]. When explicit padding used
and data_format is
"NCHW", this should be in the form
[[0, 0], [0, 0],
[pad_top, pad_bottom], [pad_left, pad_right]]`.use_cudnn_on_gpu
: An optional bool
. Defaults to True
.data_format
: An optional string
from: "NHWC", "NCHW"
.
Defaults to "NHWC"
.
Specify the data format of the input and output data. With the
default format "NHWC", the data is stored in the order of:
[batch, in_height, in_width, in_channels].
Alternatively, the format could be "NCHW", the data storage order of:
[batch, in_channels, in_height, in_width].dilations
: An optional list of ints
. Defaults to [1, 1, 1, 1]
.
1-D tensor of length 4. The dilation factor for each dimension of
input
. If set to k > 1, there will be k-1 skipped cells between each
filter element on that dimension. The dimension order is determined by
the value of data_format
, see above for details. Dilations in the batch
and depth dimensions must be 1.name
: A name for the operation (optional).filters
: Alias for filter.A Tensor
. Has the same type as filter
.