tf.compat.v1.nn.embedding_lookup

View source on GitHub

Looks up ids in a list of embedding tensors.

tf.compat.v1.nn.embedding_lookup(
    params, ids, partition_strategy='mod', name=None, validate_indices=True,
    max_norm=None
)

This function is used to perform parallel lookups on the list of tensors in params. It is a generalization of tf.gather, where params is interpreted as a partitioning of a large embedding tensor. params may be a PartitionedVariable as returned by using tf.compat.v1.get_variable() with a partitioner.

If len(params) > 1, each element id of ids is partitioned between the elements of params according to the partition_strategy. In all strategies, if the id space does not evenly divide the number of partitions, each of the first (max_id + 1) % len(params) partitions will be assigned one more id.

If partition_strategy is "mod", we assign each id to partition p = id % len(params). For instance, 13 ids are split across 5 partitions as: [[0, 5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4, 9]]

If partition_strategy is "div", we assign ids to partitions in a contiguous manner. In this case, 13 ids are split across 5 partitions as: [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10], [11, 12]]

If the input ids are ragged tensors, partition variables are not supported and the partition strategy and the max_norm are ignored. The results of the lookup are concatenated into a dense tensor. The returned tensor has shape shape(ids) + shape(params)[1:].

Args:

Returns:

A Tensor or a 'RaggedTensor', depending on the input, with the same type as the tensors in params.

Raises: