tf.compat.v1.nn.nce_loss

View source on GitHub

Computes and returns the noise-contrastive estimation training loss.

tf.compat.v1.nn.nce_loss(
    weights, biases, labels, inputs, num_sampled, num_classes, num_true=1,
    sampled_values=None, remove_accidental_hits=False, partition_strategy='mod',
    name='nce_loss'
)

See Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. Also see our Candidate Sampling Algorithms Reference

A common use case is to use this method for training, and calculate the full sigmoid loss for evaluation or inference. In this case, you must set partition_strategy="div" for the two losses to be consistent, as in the following example:

if mode == "train":
  loss = tf.nn.nce_loss(
      weights=weights,
      biases=biases,
      labels=labels,
      inputs=inputs,
      ...,
      partition_strategy="div")
elif mode == "eval":
  logits = tf.matmul(inputs, tf.transpose(weights))
  logits = tf.nn.bias_add(logits, biases)
  labels_one_hot = tf.one_hot(labels, n_classes)
  loss = tf.nn.sigmoid_cross_entropy_with_logits(
      labels=labels_one_hot,
      logits=logits)
  loss = tf.reduce_sum(loss, axis=1)

Note: By default this uses a log-uniform (Zipfian) distribution for sampling, so your labels must be sorted in order of decreasing frequency to achieve good results. For more details, see tf.random.log_uniform_candidate_sampler.

Note: In the case where num_true > 1, we assign to each target class the target probability 1 / num_true so that the target probabilities sum to 1 per-example.

Note: It would be useful to allow a variable number of target classes per example. We hope to provide this functionality in a future release. For now, if you have a variable number of target classes, you can pad them out to a constant number by either repeating them or by padding with an otherwise unused class.

Args:

Returns:

A batch_size 1-D tensor of per-example NCE losses.