tf.compat.v1.nn.rnn_cell.MultiRNNCell

View source on GitHub

RNN cell composed sequentially of multiple simple cells.

Inherits From: RNNCell

tf.compat.v1.nn.rnn_cell.MultiRNNCell(
    cells, state_is_tuple=True
)

Example:

num_units = [128, 64]
cells = [BasicLSTMCell(num_units=n) for n in num_units]
stacked_rnn_cell = MultiRNNCell(cells)

Args:

Attributes:

Raises:

Methods

get_initial_state

View source

get_initial_state(
    inputs=None, batch_size=None, dtype=None
)

zero_state

View source

zero_state(
    batch_size, dtype
)

Return zero-filled state tensor(s).

Args:

Returns:

If state_size is an int or TensorShape, then the return value is a N-D tensor of shape [batch_size, state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is a nested list or tuple (of the same structure) of 2-D tensors with the shapes [batch_size, s] for each s in state_size.