tf.compat.v1.profiler.ProfileOptionBuilder

View source on GitHub

Option Builder for Profiling API.

tf.compat.v1.profiler.ProfileOptionBuilder(
    options=None
)

For tutorial on the options, see https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/g3doc/options.md

# Users can use pre-built options:
opts = (
    tf.profiler.ProfileOptionBuilder.trainable_variables_parameter())

# Or, build your own options:
opts = (tf.compat.v1.profiler.ProfileOptionBuilder()
    .with_max_depth(10)
    .with_min_micros(1000)
    .select(['accelerator_micros'])
    .with_stdout_output()
    .build()

# Or customize the pre-built options:
opts = (tf.compat.v1.profiler.ProfileOptionBuilder(
    tf.profiler.ProfileOptionBuilder.time_and_memory())
    .with_displaying_options(show_name_regexes=['.*rnn.*'])
    .build())

# Finally, profiling with the options:
_ = tf.compat.v1.profiler.profile(tf.compat.v1.get_default_graph(),
                        run_meta=run_meta,
                        cmd='scope',
                        options=opts)

Args:

Methods

account_displayed_op_only

View source

account_displayed_op_only(
    is_true
)

Whether only account the statistics of displayed profiler nodes.

Args:

Returns:

self

build

View source

build()

Build a profiling option.

Returns:

A dict of profiling options.

float_operation

View source

@staticmethod
float_operation()

Options used to profile float operations.

Please see https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/g3doc/profile_model_architecture.md on the caveats of calculating float operations.

Returns:

A dict of profiling options.

order_by

View source

order_by(
    attribute
)

Order the displayed profiler nodes based on a attribute.

Supported attribute includes micros, bytes, occurrence, params, etc. https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/g3doc/options.md

Args:

Returns:

self

select

View source

select(
    attributes
)

Select the attributes to display.

See https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/g3doc/options.md for supported attributes.

Args:

Returns:

self

time_and_memory

View source

@staticmethod
time_and_memory(
    min_micros=1, min_bytes=1, min_accelerator_micros=0, min_cpu_micros=0,
    min_peak_bytes=0, min_residual_bytes=0, min_output_bytes=0
)

Show operation time and memory consumptions.

Args:

Returns:

A dict of profiling options.

trainable_variables_parameter

View source

@staticmethod
trainable_variables_parameter()

Options used to profile trainable variable parameters.

Normally used together with 'scope' view.

Returns:

A dict of profiling options.

with_accounted_types

View source

with_accounted_types(
    account_type_regexes
)

Selectively counting statistics based on node types.

Here, 'types' means the profiler nodes' properties. Profiler by default consider device name (e.g. /job:xx/.../device:GPU:0) and operation type (e.g. MatMul) as profiler nodes' properties. User can also associate customized 'types' to profiler nodes through OpLogProto proto.

For example, user can select profiler nodes placed on gpu:0 with: account_type_regexes=['.*gpu:0.*']

If none of a node's properties match the specified regexes, the node is not displayed nor accounted.

Args:

Returns:

self.

with_empty_output

View source

with_empty_output()

Do not generate side-effect outputs.

with_file_output

View source

with_file_output(
    outfile
)

Print the result to a file.

with_max_depth

View source

with_max_depth(
    max_depth
)

Set the maximum depth of display.

The depth depends on profiling view. For 'scope' view, it's the depth of name scope hierarchy (tree), for 'op' view, it's the number of operation types (list), etc.

Args:

Returns:

self

with_min_execution_time

View source

with_min_execution_time(
    min_micros=0, min_accelerator_micros=0, min_cpu_micros=0
)

Only show profiler nodes consuming no less than 'min_micros'.

Args:

Returns:

self

with_min_float_operations

View source

with_min_float_operations(
    min_float_ops
)

Only show profiler nodes consuming no less than 'min_float_ops'.

Please see https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/g3doc/profile_model_architecture.md on the caveats of calculating float operations.

Args:

Returns:

self

with_min_memory

View source

with_min_memory(
    min_bytes=0, min_peak_bytes=0, min_residual_bytes=0, min_output_bytes=0
)

Only show profiler nodes consuming no less than 'min_bytes'.

Args:

Returns:

self

with_min_occurrence

View source

with_min_occurrence(
    min_occurrence
)

Only show profiler nodes including no less than 'min_occurrence' graph nodes.

A "node" means a profiler output node, which can be a python line (code view), an operation type (op view), or a graph node (graph/scope view). A python line includes all graph nodes created by that line, while an operation type includes all graph nodes of that type.

Args:

Returns:

self

with_min_parameters

View source

with_min_parameters(
    min_params
)

Only show profiler nodes holding no less than 'min_params' parameters.

'Parameters' normally refers the weights of in TensorFlow variables. It reflects the 'capacity' of models.

Args:

Returns:

self

with_node_names

View source

with_node_names(
    start_name_regexes=None, show_name_regexes=None, hide_name_regexes=None,
    trim_name_regexes=None
)

Regular expressions used to select profiler nodes to display.

After 'with_accounted_types' is evaluated, 'with_node_names' are evaluated as follows:

For a profile data structure, profiler first finds the profiler nodes matching 'start_name_regexes', and starts displaying profiler nodes from there. Then, if a node matches 'show_name_regexes' and doesn't match 'hide_name_regexes', it's displayed. If a node matches 'trim_name_regexes', profiler stops further searching that branch.

Args:

Returns:

self

with_pprof_output

View source

with_pprof_output(
    pprof_file
)

Generate a pprof profile gzip file.

To use the pprof file:

pprof -png --nodecount=100 --sample_index=1

Args:

Returns:

self.

with_stdout_output

View source

with_stdout_output()

Print the result to stdout.

with_step

View source

with_step(
    step
)

Which profile step to use for profiling.

The 'step' here refers to the step defined by Profiler.add_step() API.

Args:

Returns:

self

with_timeline_output

View source

with_timeline_output(
    timeline_file
)

Generate a timeline json file.