View source on GitHub |
TensorFlow multi-step profiler.
tf.compat.v1.profiler.Profiler(
graph=None, op_log=None
)
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler/README.md
Typical use case:
# Currently we are only allowed to create 1 profiler per process.
profiler = Profiler(sess.graph)
for i in xrange(total_steps):
if i % 10000 == 0:
run_meta = tf.compat.v1.RunMetadata()
_ = sess.run(...,
options=tf.compat.v1.RunOptions(
trace_level=tf.RunOptions.FULL_TRACE),
run_metadata=run_meta)
profiler.add_step(i, run_meta)
# Profile the parameters of your model.
profiler.profile_name_scope(options=(option_builder.ProfileOptionBuilder
.trainable_variables_parameter()))
# Or profile the timing of your model operations.
opts = option_builder.ProfileOptionBuilder.time_and_memory()
profiler.profile_operations(options=opts)
# Or you can generate a timeline:
opts = (option_builder.ProfileOptionBuilder(
option_builder.ProfileOptionBuilder.time_and_memory())
.with_step(i)
.with_timeline_output(filename).build())
profiler.profile_graph(options=opts)
else:
_ = sess.run(...)
# Auto detect problems and generate advice.
profiler.advise()
graph
: tf.Graph. If None and eager execution is not enabled, use
default graph.op_log
: optional. tensorflow::tfprof::OpLogProto proto. Used to define
extra op types.add_step
add_step(
step, run_meta
)
Add statistics of a step.
step
: int, An id used to group one or more different run_meta
together.
When profiling with the profile_xxx APIs, user can use the step
id in the options
to profile these run_meta
together.run_meta
: RunMetadata proto that contains statistics of a session run.advise
advise(
options
)
Automatically detect problems and generate reports.
options
: A dict of options. See ALL_ADVICE example above.A Advise proto that conains the reports from all checkers.
profile_graph
profile_graph(
options
)
Profile the statistics of graph nodes, organized by dataflow graph.
options
: A dict of options. See core/profiler/g3doc/options.md.a GraphNodeProto that records the results.
profile_name_scope
profile_name_scope(
options
)
Profile the statistics of graph nodes, organized by name scope.
options
: A dict of options. See core/profiler/g3doc/options.md.a GraphNodeProto that records the results.
profile_operations
profile_operations(
options
)
Profile the statistics of the Operation types (e.g. MatMul, Conv2D).
options
: A dict of options. See core/profiler/g3doc/options.md.a MultiGraphNodeProto that records the results.
profile_python
profile_python(
options
)
Profile the statistics of the Python codes.
By default, it shows the call stack from root. To avoid redundant output, you may use options to filter as below options['show_name_regexes'] = ['.*my_code.py.*']
options
: A dict of options. See core/profiler/g3doc/options.md.a MultiGraphNodeProto that records the results.
serialize_to_string
serialize_to_string()
Serialize the ProfileProto to a binary string.
Users can write it to file for offline analysis by tfprof commandline or graphical interface.
ProfileProto binary string.