View source on GitHub
|
Constructs a RaggedTensorValue from a nested Python list.
tf.compat.v1.ragged.constant_value(
pylist, dtype=None, ragged_rank=None, inner_shape=None, row_splits_dtype='int64'
)
Warning: This function returns a RaggedTensorValue, not a RaggedTensor.
If you wish to construct a constant RaggedTensor, use
ragged.constant(...) instead.
>>> tf.compat.v1.ragged.constant_value([[1, 2], [3], [4, 5, 6]])
tf.RaggedTensorValue(values=array([1, 2, 3, 4, 5, 6]),
row_splits=array([0, 2, 3, 6]))
All scalar values in pylist must have the same nesting depth K, and the
returned RaggedTensorValue will have rank K. If pylist contains no
scalar values, then K is one greater than the maximum depth of empty lists
in pylist. All scalar values in pylist must be compatible with dtype.
pylist: A nested list, tuple or np.ndarray. Any nested element that
is not a list or tuple must be a scalar value compatible with dtype.dtype: numpy.dtype. The type of elements for the returned RaggedTensor.
If not specified, then a default is chosen based on the scalar values in
pylist.ragged_rank: An integer specifying the ragged rank of the returned
RaggedTensorValue. Must be nonnegative and less than K. Defaults to
max(0, K - 1) if inner_shape is not specified. Defaults to `max(0, K
ifinner_shape` is specified.inner_shape: A tuple of integers specifying the shape for individual inner
values in the returned RaggedTensorValue. Defaults to () if
ragged_rank is not specified. If ragged_rank is specified, then a
default is chosen based on the contents of pylist.row_splits_dtype: data type for the constructed RaggedTensorValue's
row_splits. One of numpy.int32 or numpy.int64.A tf.RaggedTensorValue or numpy.array with rank K and the specified
ragged_rank, containing the values from pylist.
ValueError: If the scalar values in pylist have inconsistent nesting
depth; or if ragged_rank or inner_shape are incompatible with pylist.