View source on GitHub |
Constructs a RaggedTensorValue from a nested Python list.
tf.compat.v1.ragged.constant_value(
pylist, dtype=None, ragged_rank=None, inner_shape=None, row_splits_dtype='int64'
)
Warning: This function returns a RaggedTensorValue
, not a RaggedTensor
.
If you wish to construct a constant RaggedTensor
, use
ragged.constant(...)
instead.
>>> tf.compat.v1.ragged.constant_value([[1, 2], [3], [4, 5, 6]])
tf.RaggedTensorValue(values=array([1, 2, 3, 4, 5, 6]),
row_splits=array([0, 2, 3, 6]))
All scalar values in pylist
must have the same nesting depth K
, and the
returned RaggedTensorValue
will have rank K
. If pylist
contains no
scalar values, then K
is one greater than the maximum depth of empty lists
in pylist
. All scalar values in pylist
must be compatible with dtype
.
pylist
: A nested list
, tuple
or np.ndarray
. Any nested element that
is not a list
or tuple
must be a scalar value compatible with dtype
.dtype
: numpy.dtype
. The type of elements for the returned RaggedTensor
.
If not specified, then a default is chosen based on the scalar values in
pylist
.ragged_rank
: An integer specifying the ragged rank of the returned
RaggedTensorValue
. Must be nonnegative and less than K
. Defaults to
max(0, K - 1)
if inner_shape
is not specified. Defaults to `max(0, K
if
inner_shape` is specified.inner_shape
: A tuple of integers specifying the shape for individual inner
values in the returned RaggedTensorValue
. Defaults to ()
if
ragged_rank
is not specified. If ragged_rank
is specified, then a
default is chosen based on the contents of pylist
.row_splits_dtype
: data type for the constructed RaggedTensorValue
's
row_splits. One of numpy.int32
or numpy.int64
.A tf.RaggedTensorValue
or numpy.array
with rank K
and the specified
ragged_rank
, containing the values from pylist
.
ValueError
: If the scalar values in pylist
have inconsistent nesting
depth; or if ragged_rank or inner_shape are incompatible with pylist
.