View source on GitHub |
Draws shape
samples from each of the given Poisson distribution(s).
tf.compat.v1.random_poisson(
lam, shape, dtype=tf.dtypes.float32, seed=None, name=None
)
lam
is the rate parameter describing the distribution(s).
samples = tf.random.poisson([0.5, 1.5], [10])
# samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents
# the samples drawn from each distribution
samples = tf.random.poisson([12.2, 3.3], [7, 5])
# samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1]
# represents the 7x5 samples drawn from each of the two distributions
lam
: A Tensor or Python value or N-D array of type dtype
.
lam
provides the rate parameter(s) describing the poisson
distribution(s) to sample.shape
: A 1-D integer Tensor or Python array. The shape of the output samples
to be drawn per "rate"-parameterized distribution.dtype
: The type of the output: float16
, float32
, float64
, int32
or
int64
.seed
: A Python integer. Used to create a random seed for the distributions.
See
tf.compat.v1.set_random_seed
for behavior.name
: Optional name for the operation.samples
: a Tensor
of shape tf.concat([shape, tf.shape(lam)], axis=0)
with values of type dtype
.