Multiply matrix "a" by matrix "b".
tf.compat.v1.sparse_matmul(
a, b, transpose_a=False, transpose_b=False, a_is_sparse=False,
b_is_sparse=False, name=None
)
The inputs must be two-dimensional matrices and the inner dimension of "a" must
match the outer dimension of "b". Both "a" and "b" must be Tensor
s not
SparseTensor
s. This op is optimized for the case where at least one of "a" or
"b" is sparse, in the sense that they have a large proportion of zero values.
The breakeven for using this versus a dense matrix multiply on one platform was
30% zero values in the sparse matrix.
The gradient computation of this operation will only take advantage of sparsity in the input gradient when that gradient comes from a Relu.
a
: A Tensor
. Must be one of the following types: float32
, bfloat16
.b
: A Tensor
. Must be one of the following types: float32
, bfloat16
.transpose_a
: An optional bool
. Defaults to False
.transpose_b
: An optional bool
. Defaults to False
.a_is_sparse
: An optional bool
. Defaults to False
.b_is_sparse
: An optional bool
. Defaults to False
.name
: A name for the operation (optional).A Tensor
of type float32
.