View source on GitHub |
Split elements of source
based on delimiter
. (deprecated arguments)
tf.compat.v1.string_split(
source, sep=None, skip_empty=True, delimiter=None, result_type='SparseTensor',
name=None
)
Warning: SOME ARGUMENTS ARE DEPRECATED: (delimiter)
. They will be removed in a future version.
Instructions for updating:
delimiter is deprecated, please use sep instead.
Let N be the size of source
(typically N will be the batch size). Split each
element of source
based on delimiter
and return a SparseTensor
or RaggedTensor
containing the split tokens. Empty tokens are ignored.
If sep
is an empty string, each element of the source
is split
into individual strings, each containing one byte. (This includes splitting
multibyte sequences of UTF-8.) If delimiter contains multiple bytes, it is
treated as a set of delimiters with each considered a potential split point.
>>> print(tf.compat.v1.string_split(['hello world', 'a b c']))
SparseTensor(indices=tf.Tensor( [[0 0] [0 1] [1 0] [1 1] [1 2]], ...),
values=tf.Tensor([b'hello' b'world' b'a' b'b' b'c'], ...),
dense_shape=tf.Tensor([2 3], shape=(2,), dtype=int64))
>>> print(tf.compat.v1.string_split(['hello world', 'a b c'],
... result_type="RaggedTensor"))
<tf.RaggedTensor [[b'hello', b'world'], [b'a', b'b', b'c']]>
source
: 1-D
string Tensor
, the strings to split.sep
: 0-D
string Tensor
, the delimiter character, the string should
be length 0 or 1. Default is ' '.skip_empty
: A bool
. If True
, skip the empty strings from the result.delimiter
: deprecated alias for sep
.result_type
: The tensor type for the result: one of "RaggedTensor"
or
"SparseTensor"
.name
: A name for the operation (optional).ValueError
: If delimiter is not a string.A SparseTensor
or RaggedTensor
of rank 2
, the strings split according
to the delimiter. The first column of the indices corresponds to the row
in source
and the second column corresponds to the index of the split
component in this row.