View source on GitHub |
Split elements of input
based on sep
.
tf.compat.v1.strings.split(
input=None, sep=None, maxsplit=-1, result_type='SparseTensor', source=None,
name=None
)
Let N be the size of input
(typically N will be the batch size). Split each
element of input
based on sep
and return a SparseTensor
or
RaggedTensor
containing the split tokens. Empty tokens are ignored.
>>> print(tf.compat.v1.strings.split(['hello world', 'a b c']))
SparseTensor(indices=tf.Tensor( [[0 0] [0 1] [1 0] [1 1] [1 2]], ...),
values=tf.Tensor([b'hello' b'world' b'a' b'b' b'c'], ...),
dense_shape=tf.Tensor([2 3], shape=(2,), dtype=int64))
>>> print(tf.compat.v1.strings.split(['hello world', 'a b c'],
... result_type="RaggedTensor"))
<tf.RaggedTensor [[b'hello', b'world'], [b'a', b'b', b'c']]>
If sep
is given, consecutive delimiters are not grouped together and are
deemed to delimit empty strings. For example, input
of "1<>2<><>3"
and
sep
of "<>"
returns ["1", "2", "", "3"]
. If sep
is None or an empty
string, consecutive whitespace are regarded as a single separator, and the
result will contain no empty strings at the start or end if the string has
leading or trailing whitespace.
Note that the above mentioned behavior matches python's str.split.
input
: A string Tensor
of rank N
, the strings to split. If
rank(input)
is not known statically, then it is assumed to be 1
.sep
: 0-D
string Tensor
, the delimiter character.maxsplit
: An int
. If maxsplit > 0
, limit of the split of the result.result_type
: The tensor type for the result: one of "RaggedTensor"
or
"SparseTensor"
.source
: alias for "input" argument.name
: A name for the operation (optional).ValueError
: If sep is not a string.A SparseTensor
or RaggedTensor
of rank N+1
, the strings split
according to the delimiter.