View source on GitHub
|
Optimization parameters for Adagrad with TPU embeddings.
tf.compat.v1.tpu.experimental.AdagradParameters(
learning_rate, initial_accumulator=0.1, use_gradient_accumulation=True,
clip_weight_min=None, clip_weight_max=None
)
Pass this to tf.estimator.tpu.experimental.EmbeddingConfigSpec via the
optimization_parameters argument to set the optimizer and its parameters.
See the documentation for tf.estimator.tpu.experimental.EmbeddingConfigSpec
for more details.
estimator = tf.estimator.tpu.TPUEstimator(
...
embedding_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec(
...
optimization_parameters=tf.tpu.experimental.AdagradParameters(0.1),
...))
learning_rate: used for updating embedding table.initial_accumulator: initial accumulator for Adagrad.use_gradient_accumulation: setting this to False makes embedding
gradients calculation less accurate but faster. Please see
optimization_parameters.proto for details.
for details.clip_weight_min: the minimum value to clip by; None means -infinity.clip_weight_max: the maximum value to clip by; None means +infinity.