View source on GitHub
|
Optimization parameters for Adam with TPU embeddings.
tf.compat.v1.tpu.experimental.AdamParameters(
learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-08, lazy_adam=True,
sum_inside_sqrt=True, use_gradient_accumulation=True, clip_weight_min=None,
clip_weight_max=None
)
Pass this to tf.estimator.tpu.experimental.EmbeddingConfigSpec via the
optimization_parameters argument to set the optimizer and its parameters.
See the documentation for tf.estimator.tpu.experimental.EmbeddingConfigSpec
for more details.
estimator = tf.estimator.tpu.TPUEstimator(
...
embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec(
...
optimization_parameters=tf.tpu.experimental.AdamParameters(0.1),
...))
learning_rate: a floating point value. The learning rate.beta1: A float value.
The exponential decay rate for the 1st moment estimates.beta2: A float value.
The exponential decay rate for the 2nd moment estimates.epsilon: A small constant for numerical stability.lazy_adam: Use lazy Adam instead of Adam. Lazy Adam trains faster.
Please see optimization_parameters.proto for details.sum_inside_sqrt: This improves training speed. Please see
optimization_parameters.proto for details.use_gradient_accumulation: setting this to False makes embedding
gradients calculation less accurate but faster. Please see
optimization_parameters.proto for details.
for details.clip_weight_min: the minimum value to clip by; None means -infinity.clip_weight_max: the maximum value to clip by; None means +infinity.