View source on GitHub |
Produces the integers from 0 to limit-1 in a queue. (deprecated)
tf.compat.v1.train.range_input_producer(
limit, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None,
name=None
)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Queue-based input pipelines have been replaced by tf.data
. Use tf.data.Dataset.range(limit).shuffle(limit).repeat(num_epochs)
. If shuffle=False
, omit the .shuffle(...)
.
Note: if num_epochs
is not None
, this function creates local counter
epochs
. Use local_variables_initializer()
to initialize local variables.
limit
: An int32 scalar tensor.num_epochs
: An integer (optional). If specified, range_input_producer
produces each integer num_epochs
times before generating an
OutOfRange error. If not specified, range_input_producer
can cycle
through the integers an unlimited number of times.shuffle
: Boolean. If true, the integers are randomly shuffled within each
epoch.seed
: An integer (optional). Seed used if shuffle == True.capacity
: An integer. Sets the queue capacity.shared_name
: (optional). If set, this queue will be shared under the given
name across multiple sessions.name
: A name for the operations (optional).A Queue with the output integers. A QueueRunner
for the Queue
is added to the current Graph
's QUEUE_RUNNER
collection.
Input pipelines based on Queues are not supported when eager execution is
enabled. Please use the tf.data
API to ingest data under eager execution.