tf.compat.v1.train.sdca_optimizer

Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for

tf.compat.v1.train.sdca_optimizer(
    sparse_example_indices, sparse_feature_indices, sparse_feature_values,
    dense_features, example_weights, example_labels, sparse_indices, sparse_weights,
    dense_weights, example_state_data, loss_type, l1, l2, num_loss_partitions,
    num_inner_iterations, adaptative=True, name=None
)

linear models with L1 + L2 regularization. As global optimization objective is strongly-convex, the optimizer optimizes the dual objective at each step. The optimizer applies each update one example at a time. Examples are sampled uniformly, and the optimizer is learning rate free and enjoys linear convergence rate.

Proximal Stochastic Dual Coordinate Ascent.
Shai Shalev-Shwartz, Tong Zhang. 2012

$$Loss Objective = \sum f_{i} (wx_{i}) + (l2 / 2) * |w|2 + l1 * |w|$$

Adding vs. Averaging in Distributed Primal-Dual Optimization.
Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I. Jordan, Peter Richtarik, Martin Takac. 2015

Stochastic Dual Coordinate Ascent with Adaptive Probabilities.
Dominik Csiba, Zheng Qu, Peter Richtarik. 2015

Args:

Returns:

A tuple of Tensor objects (out_example_state_data, out_delta_sparse_weights, out_delta_dense_weights).