View source on GitHub |
Produces a slice of each Tensor
in tensor_list
. (deprecated)
tf.compat.v1.train.slice_input_producer(
tensor_list, num_epochs=None, shuffle=True, seed=None, capacity=32,
shared_name=None, name=None
)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Queue-based input pipelines have been replaced by tf.data
. Use tf.data.Dataset.from_tensor_slices(tuple(tensor_list)).shuffle(tf.shape(input_tensor, out_type=tf.int64)[0]).repeat(num_epochs)
. If shuffle=False
, omit the .shuffle(...)
.
Implemented using a Queue -- a QueueRunner
for the Queue
is added to the current Graph
's QUEUE_RUNNER
collection.
tensor_list
: A list of Tensor
objects. Every Tensor
in
tensor_list
must have the same size in the first dimension.num_epochs
: An integer (optional). If specified, slice_input_producer
produces each slice num_epochs
times before generating
an OutOfRange
error. If not specified, slice_input_producer
can cycle
through the slices an unlimited number of times.shuffle
: Boolean. If true, the integers are randomly shuffled within each
epoch.seed
: An integer (optional). Seed used if shuffle == True.capacity
: An integer. Sets the queue capacity.shared_name
: (optional). If set, this queue will be shared under the given
name across multiple sessions.name
: A name for the operations (optional).A list of tensors, one for each element of tensor_list
. If the tensor
in tensor_list
has shape [N, a, b, .., z]
, then the corresponding output
tensor will have shape [a, b, ..., z]
.
ValueError
: if slice_input_producer
produces nothing from tensor_list
.Input pipelines based on Queues are not supported when eager execution is
enabled. Please use the tf.data
API to ingest data under eager execution.